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Recently there has been increasing engineering activity in the deployment of Autonomous
Underwater Vehicles (AUVs). Different types of AUVs are being used for applications rang-
ing from ocean exploration to coastal tactical surveillance. These AUVs generally follow a
predictable trajectory specified by the mission requirements. Inaccuracies in models for
deriving position estimates and the drift caused by ocean currents, however, lead to uncer-
tainty when estimating an AUV’s position. In this article, two forms of position uncertainty
– internal and external – are studied, which are the position uncertainty associated with a
particular AUV as seen by itself and that as seen by others, respectively. Then, a statistical
model to estimate the internal uncertainty for a general AUV is proposed. Based on this
model, a novel mathematical framework using Unscented Kalman Filtering is developed
to estimate the external uncertainty. Finally, the benefits of this framework for several
location-sensitive applications are shown via emulations.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Recently UnderWater Acoustic Sensor Networks
(UW-ASNs) [1] have been deployed to carry out collabora-
tive monitoring missions such as oceanographic data
collection, disaster prevention, and navigation. To ensure
coverage of the vast undersampled 3D aquatic environ-
ment, Autonomous Underwater Vehicles (AUVs) endowed
with sensing and wireless communication capabilities
become essential. These AUVs – which can be divided into
two classes, propeller-less/buoyancy-driven (e.g., gliders)
and Propeller-Driven Vehicles (PDVs) – rely on local intelli-
gence with minimal onshore operator dependence. Due
to propagation limitations of radio frequency and optical
waves, i.e., high medium absorption and scattering, respec-
tively, acoustic communication technology is employed to
transfer vital information (data and control) multi-hopping
between AUVs underwater and, ultimately, to a surface or
onshore station where this information is collected and
analyzed.

In terrestrial sensor networks, the position of a node can
be characterized by a single point because localization
error can be made small by using the Global Positioning
System (GPS), which, however, does not work underwater.
In contrast, underwater inaccuracies in localization models
and the drift caused by ocean currents will significantly
increase the position uncertainty of AUVs. Hence, using a
deterministic point is not sufficient to pinpoint the
position of underwater vehicles. Furthermore, in the water,
such a deterministic approach may cause problems such as
errors in inter-vehicle communications, vehicle collisions,
loss of synchronization – all possibly leading to mission
failures [2].

To address the problems caused by position uncer-
tainty, we introduce a probability region to characterize
stochastically a node’s position. Depending on the view
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of the different nodes, we define two forms of position
uncertainty, i.e., internal uncertainty, the position uncer-
tainty associated with a particular entity/node (such as
an AUV) as seen by itself; and external uncertainty, the
uncertainty associated with a particular entity/node as
seen by others. These two notions introduce a shift in
AUV localization – from a deterministic to a probabilistic
view – which can be leveraged to improve the performance
of solutions for a variety of problems. For example, in UW-
ASNs, by using the external-uncertainty notion, error fail-
ures in geographical routing protocols can be decreased,
and the output power at the transmitting node can be opti-
mized with the constraint to guarantee a certain Signal-to-
Noise Ratio (SNR) at the receiver (taking into account not
only channel impairments but also position uncertainty).
This notion can also be used in underwater robotics to min-
imize the risk of vehicle collisions, in underwater localiza-
tion to increase the position accuracy by selecting a
subset of nodes characterized by a low external uncer-
tainty to be used as ‘‘anchors’’ (i.e., reference nodes
employed in ‘‘trilateration’’), and in task allocation, i.e.,
the problem of selecting a subset of AUVs to accomplish
a mission, to geocast the mission details to the AUVs
within a certain region. Finally, this notion plays a major
role in data processing/visualization to improve the quality
of 3D data reconstruction as the AUV deviation from the
original mission path can be estimated and factored in.

To enable these applications, each node needs to esti-
mate the external uncertainty of other nodes. To do this,
the nodes need to first estimate their internal uncertainty
and then broadcast it to the neighbors. Due to the large
network latency (including communication transmission
and propagation delay) and information loss, this received
uncertainty information is a delayed version of a node’s
internal uncertainty and is used as the base for the neigh-
bors to estimate the sender’s uncertainty (i.e., external
uncertainty). As a result, these two forms of uncertainty
are generally different. To estimate the external uncer-
tainty, we first propose a statistical approach to model
the internal uncertainty of AUVs following predictable tra-
jectories. Based on this internal uncertainty, we then pro-
pose a solution using the Unscented Kalman Filter (UKF)
algorithm to predict the external uncertainty associated
with any localization technique and leverage this informa-
tion for performance improvement. Note that in [3] we
introduced and used the notion of external uncertainty,
whose region for simplicity was considered to be equal
to that characterizing the internal uncertainty (its lower
bound). Here we remove that simplifying assumption and
rigorously model the external uncertainty by incorporating
network latency and packet loss, which brings great bene-
fits to a variety of problems.

The remainder of this article is organized as follows: in
Section 2, we present the notions of internal and external
uncertainty and discuss the benefits of using these two
notions. We then propose our solution for modeling these
uncertainties in Sections 3 and 4, followed by a thorough
performance evaluation in Section 5; conclusions are
finally drawn in Section 6.
2. The external uncertainty and its benefits in UW-ASNs

We define here the two types of position uncertainty,
discuss the relationship between them, and comment on
the benefits of using the external uncertainty in a variety
of research areas and problems.

2.1. Internal uncertainty

This represents the position uncertainty associated
with a particular entity/node (such as an AUV) as seen
by itself. Many approaches such as those using Kalman
Filter (KF) [4,5] have been proposed to estimate this
uncertainty assuming that the variables to be estimated
have linear relationships among them, and that the noise
is additive and Gaussian. While simple and robust, KF is
not optimal when the linearity assumption among the
variables does not hold. On the other hand, approaches
using nonlinear filters such as the extended or unscented
KF attempt to minimize the mean squared errors in esti-
mates by jointly considering the navigation location and
the sensed states such as underwater terrain features,
which is non-trivial, especially in the unstructured under-
water environment.

2.2. External uncertainty

This represents the position uncertainty associated with
a particular entity/node as seen by others. Let us denote the
internal uncertainty, a 3D region associated with any node
j 2 N , the set of network nodes, as U jj; and the external
uncertainties, 3D regions associated with j as seen by
i; k 2 N , as U ij and Ukj, respectively (i – j – k). In general,
U jj;U ij, and Ukj are different from each other; also, due to
asymmetry, U ij is in general different from U ji. External
uncertainties may be derived from the broadcast/propa-
gated internal-uncertainty estimates (e.g., using one-hop
or multi-hop neighbor discovery mechanisms) and, hence,
will be affected by the end-to-end (e2e) network latency
and information loss. The estimation of the external-uncer-
tainty region U ij of a generic node j at node i (with i – j)
involves the participation of both i and j. Fig. 1(a) illus-
trates the internal- and external-uncertainty regions and
their difference; j’s uncertainty regions seen by j itself
(U jj, i.e., the internal uncertainty), by i (i.e., U ij) and by k
(i.e., Ukj) are all depicted to be different (general case). Note
that, as shown in Fig. 1(b), in general, the longer an AUV
remains underwater, the larger its external and internal
uncertainties. Estimating U ij involves estimating the
change of U jj with time; hence, in this work we propose a
solution to predict U ij based on the statistical estimation
of U jj.

2.3. Benefits to underwater applications

We present here applications and research areas where
the proposed notion of external uncertainty can be applied
to improve performance.



Fig. 1. Illustration of the external-uncertainty concept (note that superscript t, used in this work only when needed, indicates time instant t).

Fig. 2. Research areas and problems that benefit from the notion of external uncertainty (broken-line circles denote external uncertainty while broken-
dotted-line circles denote internal uncertainty; note that, for the sake of visualization simplicity, we use circles instead of 3D shapes).
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2.3.1 Communication protocols for UW-ASNs
In UW-ASNs, the external uncertainty can be used to

improve the performance of networking solutions. For
example, as shown in [3], a solution that considers external
uncertainty can be used for Delay-Tolerant Networks
(DTNs). As shown in Fig. 2(a), by leveraging the predictabil-
ity of AUVs’ trajectories, delaying packet transmissions in
such a way as to wait for the optimal network topology
(thus trading e2e delay for throughput and/or energy
consumption) can minimize communication energy con-
sumption for delay-tolerant traffic. Also, by optimizing sta-
tistically the transmission output power, routing errors/
failures can be reduced, which decreases the overall
energy/bandwidth utilization.
2.3.2. Underwater robotics
In underwater robotics, a team of AUVs can collaborate

to explore a 3D region and take measurements in space
and time. To derive the spatio-temporal correlation of the
measurements, these AUVs need to keep a geometric for-
mation and steer through the region (Fig. 2(b)). They also
need to keep a distance between each other in order to
avoid vehicle collisions. In [6], a solution is proposed to
minimize the time to form the geometric formation while
avoiding collisions. However, that solution assumes the
gliders to have correct location information, which is a
strong requirement in the underwater environment. The
solution can be made more robust against ocean currents
and acoustic channel impairments by exploiting the con-
cept of external uncertainty, e.g., a control algorithm can
be designed to minimize the probability that two AUVs
are within the collision region. This concept can also be
used to adapt the sampling strategy based on the variation
of the measurements.

2.3.3. Underwater localization
To perform self-localization, AUVs may need to rely on

other anchor nodes (e.g., AUVs) whose positions may not
be accurate, as in Fig. 2(c). Localization errors, however,
may increase if an AUV relies on anchors with large posi-
tion uncertainty. The external-uncertainty notion can
therefore be used to decrease errors and computation com-
plexity, e.g., by selecting the optimal subset of anchors
(with small external uncertainty) so to minimize the new
internal uncertainty.

2.3.4. Task allocation
Our notion of uncertainty can also be applied in task

allocation, whose objective is to choose a subset of vehicles
to accomplish reliably a mission with specific require-
ments while trying to maximize the remaining energy
after the mission or to minimize the time to complete
the mission itself [7]. By using the external-uncertainty
notion, a team of AUVs that are ‘‘closer’’ to the target can
be selected, which may lead probabilistically to less time
and/or energy to complete the mission.

2.3.5. Data processing and visualization
Once the measurements are received by the onshore

station, oceanographers need to visualize and analyze sen-
sor data for a multitude of ocean science studies. The exter-
nal-uncertainty notion can improve the quality of 3D data



B. Chen, D. Pompili / Ad Hoc Networks 34 (2015) 184–195 187
reconstruction because it provides vehicles’ deviation from
their mission path.
3. Modeling the internal uncertainty

To obtain the external uncertainty U ij; j needs to esti-
mate its internal-uncertainty region U jj first; then, U jj is
broadcast to its neighbors. Upon receiving this informa-
tion, i will derive U ij based on U jj. Therefore, it is necessary
to estimate U jj before U ij can be derived. For this reason,
here we first provide a statistical model for internal-uncer-
tainty estimation; then, we propose an UKF-based solution
to predict the external uncertainty.

Our internal-uncertainty model works for any localiza-
tion algorithm as it relies on a statistical approach to esti-
mate the confidence region using the position estimates of
an AUV. We assume that each AUV follows a predictable
trajectory, which is reasonable as AUVs generally need to
follow the pre-planned path(s) to take measurements.
The advance in mechanical, electrical, and computer engi-
neering technologies has made it possible for AUVs to steer
autonomously close to (or on) the pre-planned path(s)
under disturbance such as ocean currents. Moreover, AUVs
are designed to follow some regular movement pattern
(e.g., saw-tooth trajectories for glider). Assume without
loss of generality that the trajectory of an AUV can be
described by a function ðx; y; zÞ ¼ fðt; hÞ, where h is the list
of p parameters that needs to be specified by the AUV’s tra-
jectory (note that a point on the ocean surface, e.g., the ini-
tial position of the vehicle before going underwater, is
taken as the coordinate origin). Also, assume f is differen-
tiable except at a countable set of discrete points. This
assumption generally holds since AUVs rely on forces such
as mechanical propulsion and/or buoyancy for accelera-
tion, which results in a differentiable trajectory except at
points where abrupt change is made. For example, an
underwater glider follows a saw-tooth pattern, whose
piecewise trajectory can be described as a line (differentia-
ble) segment ðx; y; zÞ ¼ ðat þ x0; bt þ y0; ct þ z0Þ. In this
case, h ¼ ða; b; c; x0; y0; z0Þ. Assume AUV j estimates its
own coordinates, Pn ¼ ðxn; yn; znÞ, at sampling times tn

(n ¼ 1 . . . N), and its trajectory segment is of the form
PðtÞ ¼ fðt; hÞ: we need to estimate h so that the trajectory
can be determined. Note that Pn can be estimated using
existing localization techniques such as dead reckoning,
particle filtering, or long baseline navigation [8]. Conse-
quently, based on the derived trajectory, j’s internal uncer-
tainty (i.e., confidence region) can be estimated, as detailed
below.

From nonlinear regression theory in statistics, we
estimate a vehicle’s trajectory using the Gauss–Newton
Algorithm [9], which relies on the linear approximation
using the Taylor expansion fðt; hÞ � fðt; hð0ÞÞ þ Z0ðh� hð0ÞÞ,
where Z0 ¼ Zjh¼hð0Þ ¼ @f

@hjh¼hð0Þ
and hð0Þ is the vector that pro-

vides the initial values of these parameters in order to start
the algorithm. The objective of our estimation is to find the

best ĥ such that SðhÞ ¼
PN

n¼1kPn � fðtn; hÞk2 is minimized.

The idea of the Gauss–Newton Algorithm is to find ĥ

through iteration, i.e., to update hðqÞ iteratively until con-
vergence. From nonlinear regression theory, it has been

shown that ĥ� hð0Þ ¼ ðZT ZÞ�1
ZT�ð0Þ, where �ð0Þ ¼ PðtÞ�

fðt; hð0ÞÞ. Starting from the initial position, we have the fol-
lowing iterative formula to estimate hðqÞ, i.e., hðqþ1Þ ¼

hðqÞ þ dðqÞ, where dðqÞ ¼ ½ðZqÞT Zq�
�1

Zq�ðqÞ and �ðqÞ ¼ PðtÞ�
fðt; hðqÞÞ.

From statistical inference theory, we obtain asymptoti-
cally ĥ � Nðh;r2C�1Þ, where NðÞ is the normal distribu-
tion, C ¼ ZT Z, and r2 is the variance; this leads to

aT ĥ�aT h

r̂ðaT C�1aÞ1=2 � tN�p, where tN�p is the t-distribution with

N � p degrees of freedom [9], aT ¼ ½0;0; . . . ;0;1;0; . . . ;0� is
a vector with p elements, r̂ ¼ SðĥÞ=ðN � pÞ. Note that this
actually gives the confidence interval for each element in
h. It is also proven in [9] that asymptotically

fðtN ; hÞ � fðtN ; ĥÞ

r̂ 1þ ðZNÞT ZTZ�1ZN

h i1=2 � tN�p: ð1Þ

Finally, the internal-uncertainty region is given by the
approximate 100ð1� aÞ% confidence interval at tN as,

fðtN ; ĥÞ � t̂a=2
N�pr̂ 1þ ðZNÞT ZTZ�1ZN

h i1=2
; ð2Þ

where t̂a=2
N�p is the 100ð1� a=2Þ% of the t-distribution with

N � p degrees of freedom and ZN ¼ @fðtN ;hÞ
@h

is the Jacobian
matrix of fð Þ at tN .

3.1. Note

Our solution is based on the first-order Taylor expan-
sion. This method is known as Delta Method in statistics.
This basic method can be extended to second-order Taylor
expansion. However, to use second-order Delta method, it
is generally required that the first-order derivative
@f
@hjh¼hð0Þ

¼ 0 and the second-order derivative be non-zero

[10]. Under such conditions, fðtN; hÞ � fðt; hÞ will converge
in distribution to v2

jhj. If the first-order derivative is non
zero, estimating the distribution of the second-order Tay-
lor expansion is more complicated as we need to consider
the first and second power of the random variables
together. Extending to higher-order Taylor expansion will
be far more complicated. In general, adding higher-order
expansion achieves more prediction accuracy; however, it
also makes the prediction far more complicated and the
extra accuracy achieved is often not worth the increased
complexity.
4. Modeling the external uncertainty

To present our external-uncertainty model, we start
from the estimation of the one-hop external uncertainty;
then, we show how this estimate can be used to adjust
dynamically the update interval; last, but not least, we
extend the one-hop estimate to the case in which a node
is multiple hops away. Note that in this work we focus
on algorithms to model the external uncertainty. We
assume that the vehicles are synchronized in time initially
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through GPS (when on the surface) and time synchroniza-
tion algorithms are run to maintain a coarse synchroniza-
tion when underwater, i.e., the nodes synchronize the
time with a selected reference node (which may have time
drifting).

4.1. One-hop external uncertainty estimation

After receiving j’s trajectory and the internal-
uncertainty region parameters, i.e., ĥ; fðtN; ĥÞ, and

t̂a=2
N�pr̂½1þ ðZNÞT ZTZ�1ZN�1=2, AUV i can update the estimate

of j’s external-uncertainty region. Due to packet delays
and losses in the network, j’s external-uncertainty regions
as seen by single- and multi-hop neighbors are delayed ver-
sions of j’s own internal uncertainty. Hence, when using
multi-hop neighbor discovery schemes, the internal
uncertainty U jj provides a lower bound for all the external
uncertainties associated with that node, U ij;8i 2 N . Conse-
quently, we derive U ij based on the received U jj.

We use UKF to predict how the internal uncertainty
‘propagates’ (and in general ‘deteriorates’) through the net-
work. This is done in two steps, as detailed below: (1)
Region prediction, to predict the current position of an
AUV assuming that its previous location is at a point in
the internal-uncertainty region; then, the external-uncer-
tainty region is obtained by taking the set containing these
predicted positions and (2) Distribution estimation, to cal-
culate the probability density function (pdf) of the current
position by integrating the internal-uncertainty pdf over
points with the same predicted position.

4.1.1. Region prediction
AUV i first predicts j’s position assuming j is located at a

point in U jj and then considers the union of all these pre-
dicted points. The movement model of j can be described
using the following nonlinear dynamical system (note that
the equivalent discrete-time dynamic equation can be
derived as in [11] by means of the state-space method
using iterations); AUV i estimates the state from step
q ¼ 1 whenever U jj is received, where q is incremented
until a new U jj is received (in which case q is reset to 1).
Hence,

sq
j ¼ Fjs

q�1
j þ oðsq�1

j Þ þ Guq�1
j þ Bwq�1

j ð3Þ

represents the state-transition equation for the system
describing the motion of AUV j between steps q� 1 and q
(spaced T ½s� apart). Here, sq

j ¼ ½x
q
j ; y

q
j ; z

q
j ; _xq

j ; _yq
j ; _zq

j ;voc
j;x;voc

j;y;

voc
j;z�

T represents 3D position, velocity, and ocean-current

velocity of AUV j at step q;oðsq�1
j Þ is the ocean-current pre-

diction function (which is generally nonlinear),

uq�1
j ¼ ½uq�1;x

j ;uq�1;y
j ;uq�1;z

j �T is the control input for
t 2 ½ðq� 1ÞT; qTÞ (which is used not to offset the drifting,
but to steer the AUV to move along its trajectory), and

wq�1
j ¼ ½wq�1;x

j ;wq�1;y
j ;wq�1;z

j ;wq�1;x
oc;j ;wq�1;y

oc;j ;wq�1;z
oc;j �

T
repre-

sents the discrete random acceleration caused by non-ideal
noise in the control input and/or the variation in ocean cur-
rent speed. Throughout this article, when used as super-
script, T indicates matrix transpose; otherwise, it
represents the time interval. Note that oðsq�1
j Þ can be pre-

dicted using ocean-current models or data from real-time
onshore ocean observing systems; also, note that, as AUVs
are spaced a few kilometers apart, the currents affecting
the AUVs are generally different. Ocean current is affected
by many complicated factors (which are global informa-
tion) including (but not limited to) surface wind, Coriolis
effect, temperature and salinity differences, gravitational
pull of the Moon and the Sun, depth contours, shoreline
configurations and interaction with other currents. It is
unrealistic for the resource-limited AUV to get all these
global data and run complex models that considers all
these factors to predict the current velocity, even though
simplified model may probably be used (in this case it will
incur more prediction errors). On the other hand, the
onshore systems can use powerful super-computers or
data centers to finish such estimation and send back the
prediction to the AUV through the acoustic communication
networks.

In (3), Fj;G, and B are matrices to adjust the state sq
j

according to the previous state, control input, and random
acceleration noise, respectively, and are defined as,

Fj ¼
I3 T 0jI3 T 0jI3

0 I3 I3

0 0 I3

2
64

3
75; G ¼

0
I3

0

2
64

3
75; B ¼

0 0
I3 0
0 I3

2
64

3
75;

where I3 is the 3� 3 identity matrix, T 0j ½s� is the difference
between the current time and the last time when U jj was
estimated or the last update time that UKF was run, i.e.,
T 0j ¼ tnow � tU jj

if i receives j’s updated internal uncertainty

after the last UKF update, whereas T 0j ¼ T if i does not
receive j’s update message, where tU jj

is the time when
U jj is estimated by j and T is the UKF update interval.

The variable wq�1
j represents 3D samples of discrete-

time white Gaussian noise; hence, wq�1
j � Nð0;Q Þ, where

Q P 0 is the covariance matrix of the process. The random
acceleration is also assumed to be independent on the
three axes. Here we assume that an AUV can measure
the ocean-current velocity using sensors such as Acoustic
Doppler Current Profiler (ADCP), which are, however,
expensive. For AUVs without ADCP, we can force the state
for ocean current to be zero; in this case, the model would
reduce to a linear KF and the effect of ocean current should
be treated as noise, which is accounted by wq�1

j .
It is worth noting that (3) includes delays due to trans-

mission, propagation, reception, and packet loss. As the
ocean-current velocity is generally nonlinear, (3) expresses
a nonlinear relationship between sq

j and sq�1
j . Therefore, a

nonlinear Kalman filter should be used. In this work we
use UKF because this filter can provide more accurate pre-
diction than the extended KF (another type for nonlinear
prediction) while having the same computation complex-
ity of OðL3Þ for state estimation, where L (9 in our case)
is the dimension of the state variable, as proven in [12].

The position observed by the AUV at step q is related to

the state by the measurement equation, Pq
j ¼ Hsq

j þ T 0jeCvq�1
j ,

where Pq
j ¼ ½P

q;x
j ; Pq;y

j ; Pq;z
j � represents the observed position
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of the AUV at step q; here, H ¼ I3 0 0½ � is the matrix that

extracts the position, whereas eC ¼ 0 I3 0½ �T adds the

noise. The variable vq�1
j ¼ ½vq�1;x

j ;vq�1;y
j ;vq�1;z

j �T represents
the measurement noise in velocity, expressed as 3D samples
of discrete-time white Gaussian noise. Hence,
vq

j � Nð0;RÞ, where R P 0 is the covariance matrix of

the process. The observed position of the AUV Pq
j is there-

fore the actual position of the AUV affected by a measure-
ment noise, which we represent as a Gaussian variable.

The UKF algorithm provides a computationally efficient
set of recursive equations to estimate the state of such pro-
cess, and can be proven to be the optimal filter in the min-
imum square sense [13]. To implement the UKF algorithm,
we need to extend the state vector to the augmented vector

sq;þ
j ¼ ½ðsq

j Þ
T
; ðwq�1

j ÞT ; ðvq�1
j ÞT �

T
and use the corresponding

covariance matrix Vq;þ
j ¼ E½sq;þ

j ðs
q;þ
j Þ

T �. The use of UKF at
AUV i reduces the number of necessary location updates.
In fact, the filter is used to estimate the position at the AUV
based on measurements, which is a common practice in
robotics, and to predict the position of the AUVs thus limit-
ing message exchange (i.e., reducing the need for frequent
position updates). The position of j can be estimated and
predicted at i based on past estimates Pq

j . To update the
state vector, i needs to calculate a so-called L� ð2Lþ 1Þ
sigma point matrix vj;q�1 with the following column vectors

vm
j;q�1 (m ¼ 0; . . . ;2L), i.e., for m ¼ 0, v0

j;q�1 ¼ sq;þ
j ; for

m ¼ 1; . . . ; L, vm
j;q�1 ¼ sq;þ

j þ ðLþ kÞVq;þ
j

h i1=2

m
; for m ¼ Lþ

1; . . . ;2L, vm
j;q�1 ¼ sq;þ

j � ðLþ kÞVq;þ
j

h i1=2

m
.

Here ½ðLþ kÞVq;þ
j �

1=2

m
is the m-th column of the matrix

square root of ðLþ kÞVq;þ
j , where k ¼ 12ðLþ jÞ � L is a scal-

ing factor depending on 1 and j that controls the spread of
the sigma points. These sigma vectors vm

j;q�1 (m ¼ 0; . . . ;2L)
are propagated through the nonlinear state estimate, i.e.,
(3), denoted by T here, Ym

j;q�1 ¼ T ðvm
j;q�1Þ. The state and

covariance are predicted by recombining these weighted
sigma points, i.e.,

ŝq�
j ¼

X2L

m¼0

Wm
s vm

j;q�1; ð4Þ

Ŷq�1
j ¼

X2L

m¼0

Wm
s Ym

j;q�1; ð5Þ

Vq�
j ¼

X2L

m¼0

Wm
c ½Ym

j;q�1 � ŝq
j �½Y

m
j;q�1 � ŝq

j �
T
; ð6Þ

where W0
s ¼ k=ðLþ kÞ;W0

c ¼ k=ðLþ kÞ � ð1� 12 þ bÞ, and
Wm

s ¼Wm
c ¼ 1=½2ðLþ kÞ� for m ¼ 1; . . . ;2L; b is related to

the distribution of s. Normal values are 1 ¼ 10�3; j ¼ 1,
and b ¼ 2. If the distribution of s is Gaussian, b ¼ 2 is opti-
mal. Here the superscript q-means that the state ŝq�

j or Vq�
j

covariance estimate is a priori estimate. Eqs. (5) and (6)
describe how i predicts the state of AUV j before receiving
the measurement (a priori estimate). Then, i projects the
covariance matrix ahead. Once received the measurement
Pq

j ; i updates the Kalman gain Kq
j , and corrects the state
estimate and covariance matrix according to the measure-
ment, i.e.,

Vj;~Yq ~Yq
¼
X2L

m¼0

Wm
s ½Ym

j;q � Ŷm
j;q�1�½Ym

j;q � Ŷm
j;q�1�

T
;

Vj;~sq ~Yq
¼
X2L

m¼0

Wm
s ½s

q;m
j � ŝq�1;m

j �½Ym
j;q � Ŷm

j;q�1�
T
;

Kq
j ¼ Vj;~sq ~Yq

ðVj;~Yq ~Yq
Þ�1

; ð7Þ

ŝq
j ¼ ŝq�

j þ Kq
j ðY

q
j � Y

q�1
j Þ; ð8Þ

Vq
j ¼ Vq�

j � Kq
j Vj;~Yq ~Yq

ðKq
j Þ

T
; ð9Þ

where (7) updates the Kalman gain, (8) calculates the new
state (a posteriori estimate), and (9) updates the covariance
matrix. Note that the complexity of the above computa-
tions is the same as in the extended KF [12] and that the
processing cost at i is much lower than the communication
cost (the output power used by acoustic transmitters
underwater is in the order of tens of Watts).

Finally, if we denote the UKF filtering at time tq from
position p at tq�1 as hUKFðtq;p; tq�1Þ, the predicted exter-
nal-uncertainty region at step q is Uq

ij ¼ fhUKFðqT;p;

ðq� 1ÞTÞjp 2 Uq�1
ij g, which, for simplicity, we further sim-

plify in Uq
ij ¼ hUKFðqT;Uq�1

ij ; ðq� 1ÞTÞ.

4.1.2. Distribution estimation
Assume p 2 Uq

ij is predicted from point p0 at step q� 1,

i.e., p ¼ hUKFðqT;p0; ðq� 1ÞTÞ; p0 2 Uq�1
ij . The pdf gq

ijðpÞ of

the external uncertainty Uq
ij at step q can be derived from

the pdf gq�1
ij ðpÞ of Uq�1

ij as

gq
ijðpÞ ¼

Z
p¼hUKF ðqT;p0 ;ðq�1ÞTÞ;p02Uq�1

ij

gq�1
ij ðp

0Þdp0:

With the help of UKF and the probability theory, we can
derive the external uncertainty and its pdf. Note that the
initial pdf g0

ijðpÞ is the t-distribution on U jj (i.e., U0
jj) received

from j. To reduce the complexity, we convert an uncer-
tainty region (internal or external) into its discrete coun-
terparts, i.e., we divide an uncertainty region into a finite
number of equal-size small regions. When the number of
small regions is sufficiently large, the UKF filtering on each
small region can be approximated by the UKF filtering on a
point – e.g., the centroid – in this small region. Hence, the
predicted external-uncertainty region can be approxi-
mated as the region contained in the hull of these pre-
dicted points. The pdf functions are also approximated by
the probability mass functions on discrete points, which
simplifies the pdf estimation after UKF filtering.

4.2. Adjustment of the UKF update interval

So far, we have assumed the update interval T for the
UKF algorithm to be fixed. A small T determines frequent
updates, i.e., the estimation error is corrected in a timely
manner; however, frequent external-uncertainty estima-
tions lead to waste of computation resources and energy,
causing large network overhead. On the other hand, a large
T would save such resources; yet, it may lead to large



Table 1
Emulation parameter values.

Parameter Value

Initial deployment region 2.5(L) � 2.5(W) � 1(H) K m3

Sampling/update interval 30 s
Transmission power [1,10] W
Glider horizontal speed 0.3 m=s
Gliding depth range [0,500] m
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estimation errors (due to slow update and correction) and
thus worse overall performance. To capture this tradeoff,
we propose an algorithm to maximize T (i.e., to minimize
the update overhead) while keeping the estimation error
within an acceptable range: AUV j selects the optimal value
T� such that the prediction errors of all its neighbors
(denoted by N j) are below a specified threshold emax. To
do this, j needs to estimate the prediction errors of its
neighbors. Say, j estimates the prediction error for i. At
each step q, each AUV j emulates the prediction procedure
performed at i, calculates its actual new position by filter-
ing the new measurement. Then, j checks to see if the prob-
ability of i’s prediction error being greater than a
maximum error emax is within a probability threshold, i.e.,
if PrfkPq

j �Hŝq
j k > emaxg < c. To make the formulation

clear, we denote Pq
j ; ŝ

q
j , and vq

j by Pq
ij; ŝ

q
ij, and vq

ij, respec-

tively. Letting Nq
ij ¼ Pq

j �Hŝq
j , this condition transforms

into the compact expression: PrfNq
ijðN

q
ijÞ

T
> e2

maxg < c. From

the measurement equation Pq
ij ¼ Hsq

ij þ TeCvq�1
ij , assuming

vq�1
ij � Nð0; n2

ijI3Þ, we can see that Nq
ijðN

q
ijÞ

T
=ðn2

ijT
2Þ has the

v2-distribution v2
3 (note that Nq

ij has 3 elements). From
the probability constraint, for each i, the maximal time
update interval is therefore T ¼ emax

nij

ffiffiffiffiffiffi
v̂c;3
p , where v̂c;3 is the

ð1� cÞ% of v2
3-distribution; therefore, T� ¼mini2N j

emax

nij

ffiffiffiffiffiffi
v̂c;3
p .

To sum up, the steps to adjust update interval are: first,
AUV j sends out its own internal-uncertainty at the pre-set
period; and then it computes Nq

ij in order to calculate nij,
which is in turn to get the optimal update interval T�.
When abrupt change occurs, it resets T back to the pre-
set value.

4.3. External-uncertainty estimation across multiple links

For a multi-hop neighbor AUV j, depending on the selec-
tion of the path to j, the estimated uncertainty region may
be different. This is because j’s uncertainty region esti-
mated by intermediate vehicles is generally different for
different paths. This depends on factors such as availability
of ocean-current information, packet loss, communication
delays (which introduces asynchronous updates of the
external uncertainty at different nodes). Our objective for
the multi-hop estimation is to select the estimate that
gives minimum uncertainty. To compare the degree of
uncertainty, we use information entropy as the metric, i.e.,

HU ij
¼ �

Z
p2U ij

gijðpÞ logðgijðpÞÞdp; ð10Þ

here, the bigger HU ij
, the more uncertain U ij. The reason to

use this metric instead of simply using the size of the
uncertainty region is that the entropy characterizes better
the uncertainty. To estimate the j’s uncertainty region as it
propagates along a path rij; i estimates the uncertainty
region broadcast by k ¼ prevði; rijÞ, which is i’s previous
hop along rij. The estimated uncertainty region U ij;k2rij

at
time tnow is denoted as,

U ij;rij
¼ hUKFðtnow;Ukj;prevðk;rijÞ; tkj;prevðk;rijÞÞ; ð11Þ
where Ukj;prevðk;rijÞ is the most recently received estimate of
Ukj by k that is sent at time tkj;prevðk;rijÞ. If we denote the
set of all paths from i to j as Pij, then the external-
uncertainty region of j estimated by i is U ij ¼
arg minU ij;rij

;rij2Pij
HU ij;rij

. Note that this multi-hop estimation
will incur low overhead as, from (11), we see that this esti-
mation is performed recursively, i.e., i can use its neigh-
bor’s external-uncertainty estimation for multi-hop node
j to estimate U ij.

5. Performance evaluation

We present here the assumptions and setup that our
simulations are based on. In our simulations, the acoustic
channel is modeled as in [3]. We assume that an AUV esti-
mates its own position underwater by Dead Reckoning, i.e.,
using previous position and estimated vehicle velocity
(any other localization method can be used too). We
assume that an AUV’s drift (i.e., the relative displacement
from its trajectory) is a 3D Markov process whose drifting
in any of the x; y; z direction is Gaussian and whose magni-
tude along each direction in any time interval u is

ffiffiffiffiup /,
where / is a scaling factor [14]. The simulation parameters
are listed in Table 1; the AUVs are initially randomly
deployed in the 3D region. We use typical velocities for
PDVs varying from 2 to 10 K m=h [7]. The PDV velocity is
dependent on various nonlinear factors like drag force
and motor friction. For gliders, we assume the trajectory
segment is described by a linear form, whereas for PDVs
by the quadratic form ðx; y; zÞ ¼ 0:5ft2 þ gt þ P0, where
f;g, and P0 denote the acceleration, velocity, and initial
position of a PDV, respectively, as in the kinematic model
in [15]. A glider initially starts from its position with ran-
domly distributed in the 3D region, then it glides randomly
up/down to the bottom at an angle that is uniformly dis-
tributed in the pitch angle range given in Table 1; when
it reaches the boundary given, it changes its direction
and glides to the other direction at another random angle,
and so on. For PDVs, we model their typical kinematic
trajectory by choosing the trajectory to be piecewise
quadratic curves (described as above) in a vertical plane,
where for each piece jfj is uniformly distributed at
½0:1;0:4�m=s2 (typical PDV acceleration speed) and jgj
being uniformly distributed at ½0:5;2:8�m=s (typical PDV
speed).

Note that our sampling/update interval is taken to be
30 s, which is also the interval between samples used for
estimating the AUV trajectory in Section 3. For each trajec-
tory segment we use the samples collected during this
segment. Hence, the time window used to estimate the
Pitch angle range [10�,35�]
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Fig. 3. External-uncertainty prediction accuracy: estimated 3D region sizes.

−250 −200 −150 −100 −50 0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x [m]

pm
f

Simulated
Glider (UKF)
Glider (KF)
PDV (UKF)
PDV (KF)

(a) pmf along the x coordinate

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

y [m]

pm
f

Simulated
Glider (UKF)
Glider (KF)
PDV (UKF)
PDV (KF)

(b) pmf along the y coordinate

−400 −300 −200 −100 0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

z [m]

pm
f

Simulated
Glider (UKF)
Glider (KF)
PDV (UKF)
PDV (KF)

(c) pmf along the z coordinate

Fig. 4. External-uncertainty prediction accuracy: estimated 3D region probability mass functions (pmfs).
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AUV location starts from the time when the AUV changes
the current trajectory. Further investigation can be done
using a fixed number of the last samples to estimate the
location and its associated uncertainty, and then derive
the optimal value for this number.

5.1. External-uncertainty prediction accuracy

We are interested in comparing the external-uncer-
tainty prediction accuracy of our proposed UKF algorithm
with that predicted using a simple KF. We compare the
3D sizes and probability mass functions (pmfs) between
those obtained in simulations and those predicted by our
model. To obtain statistical relevance in the results, simu-
lations of 100 rounds were performed for predictions of
gliders and PDVs, and the average results are plotted in
Figs. 3 and 4. Note that by ‘Glider (UKF)’ and ‘Glider (KF)’
we denote the uncertainty for a glider predicted using
the UKF and KF, respectively; a similar notation is also used
for PDVs. From these figures, we can see that our external-
uncertainty model using UKF gives more accurate predic-
tions than that using KF on the region sizes and distribu-
tion functions for both types of vehicles. In any of these
axis, the vehicle may be randomly located in a range
½s� q=2; sþ q=2�, where s is the expected location of this
vehicle in this direction. We call q the size of the uncer-
tainty region as it determines the range the AUV may be
distributed in. Fig. 3 plots these sizes at different times,
where the horizontal axis is the time duration that an
AUV remains underwater. We assume that at time 0 there
is no position uncertainty (e.g., AUVs are on the ocean sur-
face where GPS is accessible) and that estimations of the
external uncertainty are run at the same time. To compare
the distribution functions, in Fig. 4 we also align the pmfs
(i.e., move the expected positions of the vehicle in these
three cases to 0). Each pmf value at a discrete position,
say x0, is calculated by checking if the vehicle lies in
½x0 � w=2; x0 þ w=2�, where w is the interval size. Note that
the prediction accuracy for gliders is generally better than
that for PDVs: this is because gliders follow saw-tooth tra-
jectories (piecewise line segments), which are easier to
predict than the nonlinear trajectories followed by PDVs.
This is because parametric uncertainties like ocean current
uncertainty make it more difficult to estimate nonlinear
function (i.e., trajectory of PDVs) than linear function (i.e.,
trajectory of gliders) [16]. Also, note that the longer an
AUV stays underwater, the less accurate the prediction
is: provided an accuracy threshold, our model can be used
for AUVs to decide when to surface for position correction
(e.g., to get a GPS fix).

5.2. Impact on UW-ASNs

To appreciate the impact of using the external uncer-
tainty on underwater communications and networking,
we implemented the external-uncertainty model in QUO
VADIS [3], a Quality of Service (QoS)-aware communica-
tion optimization framework we developed for UW-ASNs.
Using our position-prediction model, QUO VADIS mini-
mizes energy consumption for communication by delaying



Fig. 5. SLOCUM glider with a BT-25UF transducer on top of the payload (left); horizontal plane radiation pattern of the BT-25UF (right).
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packet transmissions in order to wait for a favorable net-
work topology (thus trading e2e delay for energy and/or
throughput). QUO VADIS leverages the predictability of
AUV trajectories to estimate the best future positions of
other AUVs and forwards the packet at the optimal time
so to minimize the e2e communication energy. We com-
pare QUO VADIS with well-known DTN solutions, i.e.,
RAPID [17], MaxProp [18], and Spray and Wait [19], which
do not consider the position uncertainty of AUVs. QUO
VADIS is proposed to serve two classes of traffic: Class I,
i.e., delay-tolerant, loss-tolerant traffic, and Class II, i.e.,
delay-tolerant, loss-sensitive traffic. We denote QUO VADIS
for Class I traffic using the BT-25UF acoustic transducer
(a device to convert acoustic into electrical energy and
viceversa – see Fig. 5), for Class I traffic using the ideal
omni-directional transducer, for Class II traffic using the
BT-25UF transducer, for Class I traffic using the ideal
omni-directional transducer, and the solution with no
delaying of the transmission as ‘QUO VADIS I’, ‘QUO VADIS
I–OMNI’, ‘QUO VADIS II’, ‘QUO VADIS II–OMNI’, and ‘QUO
VADIS–ND’, respectively. Also, we denote the RAPID solu-
tion with Class I constraints as ‘RAPID I’ and the solution
with Class II constraints as ‘RAPID II’. Last, we are inter-
ested to see the theoretical performance of our QUO VADIS
(denoted by ‘QUO VADIS–THEORY’), i.e., AUVs stay well on
the planned trajectory and there is no localization
uncertainty.

These existing DTN solutions have been proposed for
communications within extreme and performance-chal-
lenged environments where continuous e2e connectivity
does not hold most of the time [20,21]. Many approaches
such as Resource Allocation Protocol for Intentional DTN
(RAPID) routing [17], Spray and Wait [19], and MaxProp
[18], are solutions mainly for intermittently connected
terrestrial networks. RAPID [17] translates the e2e routing
metric requirement such as minimizing average delay,
minimizing worst-case delay, and maximizing the number
of packets delivered before a deadline into per-packet
utilities. At a transfer opportunity, it replicates a packet
that locally results in the highest increase in utility. To
estimate the minimum average delay, worst-case delay
or number of packets delivered, the nodes needs to esti-
mate delay distribution among nodes based on the
sequence of packet forwarding and number of buffered
packets in each node, which may lead to exponential com-
putation complexity (to reduce complexity, exponential
distribution is used to approximate the calculation in
[17]). Spray and Wait [19] ‘‘sprays’’ a number of copies
per packet into the network, and then ‘‘waits’’ until one
of these nodes meets the destination. In this way it bal-
ances the tradeoff between the energy consumption
incurred by flooding-based routing schemes and the delay
incurred by spraying only one copy per packet in one
transmission. The computation complexity of Spray and
Wait is Oð1Þ as it does randomly decide whether to for-
ward packet without using any network information.
MaxProp [18] prioritizes both the schedule of packets
transmissions and the schedule of packets to be dropped,
based on the path likelihoods to peers estimated from his-
torical data and complementary mechanisms including
acknowledgments, a head-start for new packets, and lists
of previous intermediaries. The computation complexity
of MaxProp is OðN2

nodeÞ per node per contact, where Nnode

is the number of nodes. It is shown that MaxProp per-
forms better than protocols that know the meeting sche-
dule between peers. These terrestrial DTN solutions may
not achieve the optimal performance underwater as the
characteristics of underwater communications are not
considered. Hence, in the rest of this section, we focus
on related solutions for UW-ASNs.

As shown in Figs. 6 and 7, QUO VADIS outperforms
RAPID, MaxProp, and Spray and Wait as these solutions
transfer packets once the neighbors are in the transmitter’s
range. They perform well for a scenario where the connec-
tivity is intermittent. However, the performance may not
be optimal as in such scenario the link performance may
be low. In contrast, by using the notion of external uncer-
tainty, QUO VADIS predicts and waits for the best network
configuration, where nodes move closer for the best com-
munications; consequently, both e2e delivery ratio and
link bit rate of QUO VADIS are the highest while its energy
consumption is minimal. If the prediction is perfect, the
performance (QUO VADIS–THEORY) has better perfor-
mance than non-perfect scenarios. Note that among these
3 DTN solutions, RAPID performs the best: this is because
RAPID prioritizes old packets so they will not be dropped.
MaxProp gives priority to new packets; older, undelivered
packets are dropped in the middle. Spray and Wait works
in a similar way, i.e., it does not give priority to older pack-
ets. On the other hand, Spray and Wait is slightly better
than MaxProp: this is because in our scenario the network
connectivity is generally not disrupted.



0 5 10 15 20 25 30 35 40 45 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Gliders

D
el

iv
er

y 
R

at
io

QUO VADIS − ND
QUO VADIS I
QUO VADIS I − OMNI
QUO VADIS I − THEORY
RAPID I
MaxProp I
Spray & Wait I

(a) Delivery ratio

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

Number of Gliders

E
ne

rg
y 

C
on

su
m

pt
io

n 
(m

J/
bi

t)

QUO VADIS − ND
QUO VADIS I
QUO VADIS I − OMNI
QUO VADIS I − THEORY
RAPID I
MaxProp I
Spray & Wait I

(b) Energy consumption

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

Number of Gliders

Li
nk

 B
it 

R
at

e 
(b

its
/s

)

QUO VADIS − ND
QUO VADIS I
QUO VADIS I − OMNI
QUO VADIS I − THEORY
RAPID I
MaxProp I
Spray & Wait I

(c) Link bit rate

Fig. 6. Impact on UW-ASNs: performance comparison for Class I traffic with DTN protocols.
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Fig. 7. Impact on UW-ASNs: performance comparison for Class II traffic with DTN protocols.
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Fig. 8. Impact on UW-ASNs: comparison of e2e delay and overhead.
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To see whether QUO VADIS can meet the delay require-
ment of the delay-tolerant traffic, we plot the e2e delays of
these solutions. As shown in Fig. 8(a) and (b), QUO VADIS–
ND gives the lowest e2e delay of the non-perfect cases.
Compared to QUO VADIS and QUO VADIS–OMNI, QUO
VADIS–ND does not wait for the vehicles to move to the
optimal configuration, which results in more retransmis-
sions. Still, as the vehicle speed is much lower than the
underwater acoustic speed, QUO VADIS–ND needs much
less time than QUO VADIS and QUO VADIS–OMNI even
though more retransmissions are needed (thus resulting
in higher communication delay). Similarly, the huge differ-
ence between vehicle and acoustic speed leads to the result
that QUO VADIS and QUO VADIS–OMNI need more time
than the DTN protocols, especially when the number of
vehicles is small (i.e., where average inter-vehicle distance
is large). On the other hand, by taking the position uncer-
tainty into account, communications using QUO VADIS–
ND are more reliable than those using RAPID, MaxProp or
Spray and Wait, so lower e2e delay is incurred. QUO VADIS
has lower delay than QUO VADIS–OMNI due to the
improvement in communications by exploiting the direc-
tional transducer gain. Also, Class II traffic generally suffers
from higher e2e delay than Class I due to the need for
retransmissions. Finally, note that as the number of gliders
increases the delays of QUO VADIS and QUO VADIS–OMNI
drop quickly: this is because average inter-vehicle dis-
tances become smaller and the number of close neighbors
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increases, which reduces the need for a glider to wait a
long time until a neighbor moves close.

To quantify the networking cost of all these solutions, in
Fig. 8(c) we compare their overhead; even though QUO
VADIS achieves the best network performance, its over-
head is not the highest. The protocols with the higher over-
head are in fact RAPID and MaxProp. In order to work,
RAPID needs much control information – average size of
past transfer opportunities, expected meeting times with
nodes, list of packets delivered since last exchange,
updated delivery delay estimate based on current buffer
state, and information about other packets if modified
since last exchange with the peer – which takes a large
number of bytes. MaxProp needs to exchange a list of val-
ues including probabilities of meeting every other node on
each contact, which basically corresponds to gathering glo-
bal information achievable only through high neighbor dis-
covery overhead. Compared to RAPID and MaxProp, QUO
VADIS only needs to exchange the external-uncertainty
information of itself and that of the destination node. The
Spray and Wait protocol reduces transmission overhead
by spreading only a few data packets to the neighbors.
The source node then stops forwarding and lets each node
carry a copy and perform direct transmissions. In our sim-
ulations, we selected the number of copies (sent to neigh-
bors) to be one so to make the comparison fair and keep
the overhead low. Last, but not least, we also implemented
the dynamic adjustment of update intervals, which is
denoted by ‘QUO VADIS–DYN’. Compared with QUO VADIS,
by using the external-uncertainty notion the proposed
dynamic adjustment algorithm saves a significant amount
of overhead. Note that here it is not necessary to differen-
tiate the two classes of traffic as the overhead difference is
small.

5.3. Impact on underwater robotics

Our approach brings appreciable benefits also to under-
water robotics, where AUVs need to form a team in a spe-
cific formation, steer through the 3D region of interest, and
take application-dependent measurements such as tem-
perature and salinity. In [6], team formation and steering
algorithms relying on underwater acoustic communica-
tions are proposed to enable glider swarming that is robust
against ocean currents and acoustic channel impairments
(e.g., high propagation and transmission delay, and low
communication reliability). Given the number of AUVs to
form the team and the formation geometry (which
depends on the monitoring application), the gliders need
to reach their positions in the specified formation; then,
once the formation has been formed, they need to move
through the region along a predefined trajectory while
maintaining the formation. Algorithms for the AUVs to
minimize the time to form the specified geometry forma-
tion and to steer the team through the 3D underwater area
while keeping the team formation are proposed in [6]
(Fig. 2(b)); without considering position uncertainty, vehi-
cle collision is simply defined deterministically to occur
when the inter-vehicle distance is below a predefined
threshold. Conversely, using our external-uncertainty
notion, we can improve the collision avoidance algorithms
by adopting a probabilistic approach, i.e., we require the
probability of two vehicles having a distance below a
threshold be less than a given probability. This can make
collision avoidance algorithms more robust in the under-
water environment where position information is not
accurate.

We implement the team formation and steering algo-
rithms proposed in [6] for a simulated 10-h long mission
where the team moves in a lawn-mower style to scan an
area, as shown in Fig. 9(a). During the mission, the AUVs
are required to form horizontal formations, as shown in
Fig. 9(b), where ‘L’, ‘T’, and ‘Q’ denote ‘Linear’, ‘Triangular’,
and ‘Quadrangular’ formations, respectively, and the num-
ber following these letters represents the number of AUVs
in use. The closest inter-vehicle distance is set as 200 m.
Two AUVs are defined to collide if the probability of their
distance being within 10 m is greater than 0:1. We further
assume that the displacement of the vehicles is incurred by
random horizontal currents whose speeds follow the 2D
Gaussian distribution Nð0;r2

0I2Þ, where r0 ¼ 0:05 m=s
and I2 is the 2� 2 identity matrix. The number of collisions
are counted and plotted in Fig. 9(c). We can see that the
external-uncertainty-aware algorithms can effectively
reduce the number of vehicle collisions, and the higher
the number of vehicles used, the more collisions the exter-
nal-uncertainty-aware algorithms can prevent. Here, ‘Gli-
der w/o EU’, ‘Glider w/ EU’, ‘PDV w/o EU’, and ‘PDV w/o
EU’ denote algorithms used for a team of gliders using
the above external-uncertainty-aware constraints, a team
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of gliders not using the above external-uncertainty-aware
constraints, a team of PDVs using the above external-
uncertainty-aware constraints, and a team of PDVs not
using the above external-uncertainty-aware constraints,
respectively.

6. Conclusion and future work

We defined two forms of position uncertainty for
autonomous underwater vehicles – internal and external
(depending on the view of the vehicles). We introduced a
statistical model for internal-uncertainty estimation that
works with any underwater localization scheme; based
on this model, we designed an Unscented Kalman Filter
to estimate the external uncertainty, and showed its effec-
tiveness on several location-sensitive applications ranging
from underwater acoustic communication and localization
to distributed robotics and data processing/visualization.
As future work, we plan to implement these solutions on
underwater acoustic modems and field test them on a
small fleet of autonomous vehicles performing adaptive
sampling.
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