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Purpose: Segmentation of the hippocampus from magnetic resonance (MR) images is a key task
in the evaluation of mesial temporal lobe epilepsy (mTLE) patients. Several automated algorithms
have been proposed although manual segmentation remains the benchmark. Choosing a reliable
algorithm is problematic since structural definition pertaining to multiple edges, missing and fuzzy
boundaries, and shape changes varies among mTLE subjects. Lack of statistical references and
guidance for quantifying the reliability and reproducibility of automated techniques has further
detracted from automated approaches. The purpose of this study was to develop a systematic and
statistical approach using a large dataset for the evaluation of automated methods and establish
a method that would achieve results better approximating those attained by manual tracing in the
epileptogenic hippocampus.
Methods: A template database of 195 (81 males, 114 females; age range 32–67 yr, mean 49.16 yr)
MR images of mTLE patients was used in this study. Hippocampal segmentation was accomplished
manually and by two well-known tools (FreeSurfer and ) and two previously published
methods developed at their institution [Automatic brain structure segmentation (ABSS) and Lo-
calInfo]. To establish which method was better performing for mTLE cases, several voxel-based,
distance-based, and volume-based performance metrics were considered. Statistical validations of
the results using automated techniques were compared with the results of benchmark manual
segmentation. Extracted metrics were analyzed to find the method that provided a more similar result
relative to the benchmark.
Results: Among the four automated methods, ABSS generated the most accurate results. For this
method, the Dice coefficient was 5.13%, 14.10%, and 16.67% higher, Hausdorff was 22.65%,
86.73%, and 69.58% lower, precision was 4.94%, −4.94%, and 12.35% higher, and the root mean
square (RMS) was 19.05%, 61.90%, and 65.08% lower than LocalInfo, FreeSurfer, and ,
respectively. The Bland–Altman similarity analysis revealed a low bias for the ABSS and LocalInfo
techniques compared to the others.
Conclusions: The ABSS method for automated hippocampal segmentation outperformed other
methods, best approximating what could be achieved by manual tracing. This study also shows
that four categories of input data can cause automated segmentation methods to fail. They include
incomplete studies, artifact, low signal-to-noise ratio, and inhomogeneity. Different scanner platforms
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and pulse sequences were considered as means by which to improve reliability of the automated
methods. Other modifications were specially devised to enhance a particular method assessed in this
study. C 2016 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4938411]

Key words: medical imaging, image processing, segmentation, hippocampus, temporal lobe epilepsy,
magnetic resonance imaging (MRI)

1. INTRODUCTION

Epilepsy is defined by the occurrence of at least two recurrent
epileptic seizures in less than 24 h. The hippocampus is a
seminal structure in the most common surgically treated form
of epilepsy and it also factors highly in the pathology of
Alzheimer’s disease and mild cognitive impairment. The
prevalence of epilepsy in developing countries is 14–57
cases per 1000 individuals1,2 and in developed countries,
4–10 cases.3 Temporal lobe epilepsy (TLE) represents a
group of disorders in which patients suffer from recurrent
epileptic seizures arising in one or both temporal lobes of the
brain. According to the International League Against Epilepsy
(ILAE), TLE is categorized into two main groups: mesial TLE
(mTLE) and lateral TLE. The most common form of epilepsy
is mTLE, which is characterized by recurrent complex partial
seizures.4 Hippocampal sclerosis is usually considered as its
pathophysiological substrate.5

Surgical resection of the epileptogenic hippocampus and
neighboring structures is considered optimal for long-term
seizure freedom in drug-resistant mTLE patients. However,
successful surgical outcome is dependent on an accurate
analysis of pathoanatomical and functional changes in the
hippocampus.6 Accurate segmentation of the hippocampus
aids in establishing asymmetry regarding size and signal
characteristics in order to disclose the likely site of
epileptogenicity. With sufficient refinement, it may ultimately
aid in the avoidance of invasive monitoring with its expense
and risk for the patient. To this end, a reliable and consistent
method for segmentation of the hippocampus from magnetic
resonance imaging (MRI) is needed.

Subfields of the hippocampus are characterized by multiple
edges of low contrast and low signal-to-noise ratio with
discontinuous and missing boundaries. Moreover, both the
size and shape of the hippocampus change along its
longitudinal axis. These characteristics make the automated
segmentation very challenging. Manual segmentation of the
hippocampus, therefore, is regarded as the current gold
standard7 for establishing dimension, although it involves
experienced personnel in a time-consuming task not ideal in
the current clinical practice. There are also both inter-rater
and intrarater variabilities which produce inconsistencies
in manual segmentation rendering it less than optimal;
conversely, automated methods can be designed to address
such variability analytically.

Over the past decade, new algorithms have been developed
for automated segmentation of the hippocampus. Accuracy,
reliability, and reproducibility have been the key elements
in the evolution of these techniques. We have categorized
automated techniques into four groups: (1) mapping and

registration based on single or multiatlas; (2) pattern-matching
based on information registration; (3) shape-fitting based
on energy minimizing, and (4) label assignment based on
pattern recognition and machine learning. In some studies,
combinations of these categories have also been considered.
For instance, both atlas registration and minimization of an
energy function have been applied for segmentation purposes.8

In the first category, a reference image called an atlas
mask is registered to the subject image. After registration,
the coordinates of the region of interest (ROI) are mapped
from the atlas image to the subject image.9 Many studies
have been done on the atlas selection and its effect on
segmentation accuracy in the hippocampal regions.10 A graph-
cuts algorithm combined with atlas-based segmentation and
morphological opening has been proposed for hippocampal
extraction.11 By using a multiatlas segmentation approach,
multiple atlases are registered to the target image and the
deformed labels are combined.12 A multiatlas framework
with autocontext models (ACMs) has been suggested for
automated segmentation of 7T magnetic resonance (MR)
images.13 Multiatlas methods are used as nonparametric
regression models in the high-dimensional space of image
patches for characterizing expected segmentation error.14

A multiatlas segmentation propagation technique has been
adapted for performing label fusion using local similarity
to involve pathology in TLE.15 FreeSurfer16 is a publicly
available package with subcortical atlas-based features
for automated segmentation of the brain structures. It
includes volumetric segmentation, intersubject alignment,
segmentation of hippocampal subfields, white matter fascicles
segmentation, and construction of surface models of cerebral
cortex. Nonlinear template matching is used in this tool for
segmentation of brain structures such as the hippocampus.
The atlas is registered to the target image and the atlas
labels are then deformed to the coordinate framework of the
target image.

Defined techniques in the second category segment a
predefined ROI using a knowledge-based system. Pattern-
matching has been shown as a robust and repeatable
methodology for hippocampal segmentation in MR images.17

Prior knowledge about hippocampal position was used for
volumetric diffeomorphic normalization and pattern-matching
as a semiautomatic technique.18 Elastic pattern-matching
and an evolutionary heuristic approach were combined
with prior statistical information about ROI to control
deformable patterns.19 LocalInfo is such an algorithm, with
information-based registration for segmentation of brain
structures.20 In this technique, the right and left hippocampi
are segmented using information-based multiple atlases. It
applies affine registration for representing the coordinates
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of the hippocampus in an atlas mask. Three- and ten-label
fuzzy classification, tissue-type information extraction, and
optimization of shape parameters are performed for the
segmentation task. Extraction of principal and mean shapes
by LocalInfo is accomplished through nonrigid registration
of atlases and subject images, transformation to label maps
with approximation to those that correspond ideally, affine
registration, and principal component analysis (PCA).

In the third category, different energy-minimizing models
guided by internal and external shape forces such as discrete
contours, classic snakes, deformable contours, and level-set
models have also been developed for automated segmentation
of brain structures.21 Modified deformable counters with
minimizing energy functions22,23 have been specifically
suggested for medical image segmentation. A group of
deformable templates, iteratively modified to minimize a
hybrid local/global energy, have been used for fitting to the
contours of target structures in MRI.24  is an elastic
registration method for MR images of the brain which is
also publicly available. This method minimizes the energy
function for deformable registration and segments brain
structures from an atlas. It uses a hierarchical procedure
for optimization of an energy function and a set of features
to derive volumetric structures. Moreover, the concept of an
attribute vector is used to characterize brain structures in the
vicinity of each voxel. Geometric moment invariants (GMIs)
are applied for representing the geometric structure of the
underlying anatomy. This method includes a morphometric
analysis for the segmentation of high-resolution images.25

The fourth category of automated segmentation techniques
is the pattern-recognition algorithms such as artificial neural
networks (ANNs) and other machine-learning techniques
which assign labels to image patterns. The intensities of
a MRI voxel and its neighboring voxels are applied as inputs
to a three-layer ANN.26 Local label learning using both image
intensity and texture features is proposed to estimate the target
image’s segmentation label by support vector machine (SVM)
to distinguish a hippocampal voxel from its neighboring
voxels.27 A mask representing manual tracing is used as the
search space and morphological operations are used to reduce
extension of the region beyond the hippocampal boundaries.

Automatic brain structure segmentation (ABSS)28 is based
on ANNs and has been developed for the segmentation
of the brain structures from a MRI. Shape and signed-
distance functions of the hippocampal region are represented
in different scales by GMIs and ANNs. For each scale, the
GMIs, as well as voxel intensities and coordinates, are fed
as input while the signed-distance function is considered as
output of an ANN. Finally, ANN outputs of different stages
are fed into another ANN. The output of the overall system
consists of two different regions, inside and outside of the
hippocampus.

In this work, we present a systematic and statistical analysis
approach for evaluation of automated segmentation methods
in order to establish one that reliably approximates the results
achieved by manual tracing of the hippocampus. As stated
above, we have categorized the basic algorithms that may
be used to develop an automated technique into four groups.
Then, we have chosen a fully automated technique from each
group and assessed accuracy, reliability, and reproducibility
using a database of mTLE MRI studies. To this end, we
have applied established methods of performance evaluation
on the segmentation results. Next, based on the segmentation
results, we have categorized the input conditions of those cases
with unacceptable segmentation outcomes to find necessary
conditions promoting optimal results. At the end, we have
addressed the shortcomings of the automated segmentation
methods and how to improve them.

The automatic methods chosen to evaluate each category
were selected on the basis of availability and other criteria
defining ease of use (Fig. 1). ABSS and LocalInfo were
developed at our institution. FreeSurfer and  are
public software and are readily accessible, whereas access
to others is restricted. FreeSurfer and  are well-
known tools and have been widely used for automatic
segmentation. Comparison of these common methods with
newer techniques (ABSS and LocalInfo) is useful to establish
progress in methodology. The absence of any need for
initial parameter settings or initial conditions in the chosen
methods enhances reproducibility by remaining insensitive to
user-defined parameters or variability in user setting. They
considered in the literature to be of low complexity and

F. 1. The automatic techniques are categorized into four groups: (1) mapping and registration based on single or multiatlas, (2) pattern-matching based on
information registration, (3) shape-fitting based on energy minimization, and (4) labeling assignment based on pattern recognition and machine learning. A fully
automatic technique is chosen for each group. By statistical analysis, the accuracy, reliability, and reproducibility are assessed using a large database of mTLE
MRI studies. The best performing method was selected and the input conditions of those cases with unacceptable segmentation outcomes were evaluated. Some
modifications were specially devised to enhance a particular method assessed in this study.
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expeditious, traits that are sought after in the imaging industry.
Running time and complexity of methods are primary driving
elements in clinical application.

The rest of the paper is organized as follows. In Sec. 2, the
subjects and the imaging protocols are presented. In Sec. 3,
the methods including skull stripping, manual and automatic
segmentation, and performance measures are introduced. In
Sec. 4, experimental results and statistical analysis of the
validation methods are presented. The paper is concluded in
Sec. 5 where a final discussion is presented.

2. MATERIALS
2.A. Subjects

An archival review of mTLE patients treated between June
1993 and June 2014 at Henry Ford Hospital, Detroit, MI
was performed. The patients were evaluated by neurologic
examination, video-electroencephalography (EEG), MR and
nuclear medicine imaging, and neuropsychological testing.
A template database of MR images of 195 mTLE patients
(81 males, 114 females; age range of 32–67 yr, mean age of
49.16 yr) was used in the study. Analysis of the images was
approved by the institutional IRB board. Individual patient
consent was not required as the analysis used anonymized
data that had been acquired previously for the patient care.

2.B. Imaging protocol

Preoperative MR images were obtained using a 1.5T or a
3.0T MRI system (GE Medical Systems, Milwaukee, USA)
and included coronal T1-weighted images, using inversion
recovery spoiled gradient echo, IRSPGR protocol. On the
1.5T MRI, T1-weighted imaging parameters were TR/TI/TE
= 7.6/1.7/500 ms, flip angle = 20◦, and voxel size = 0.781
× 0.781× 2.0 mm3. On the 3.0T MRI, T1-weighted imaging
parameters were TR/TI/TE= 10.4/4.5/300 ms, flip angle= 15◦,
and voxel size = 0.39 × 0.39 × 2.00 mm3.

3. METHODS

The following sequence of steps was carried out for
each case: skull stripping, manual segmentation, automatic
segmentation by four methods, statistical validation by voxel-,

distance-, and volume-based measures, and analysis of
the results to find out reasons for the failure of specific
segmentation methods in certain cases. A flowchart of the
steps carried out in this work is shown in Fig. 2. The steps are
explained below.

3.A. Skull stripping

To enable further processing, scalp, skull, and dura were
removed from the T1-weighted images by automated and
manual skull stripping. Optimal elimination of nonbrain
tissues provides for better subsequent volumetric analysis.29,30

The results of using the skull stripped images revealed that
accuracy of some automatic segmentation algorithms like
atlas-based methods and LocalInfo enhanced through skull
stripping as other applications such as brain morphometry,
cortical surface reconstruction, and presurgical planning.
Image analysis software such as BrainSuite,31 MRIcro,32

,33 and  (Ref. 34) was used for this step. The stripping
procedure was performed manually in the image slices that
the results of automated methods were judged unacceptable.
Figure 3 illustrates the procedure.

3.B. Manual segmentation

Using the coronal T1-weighted MR images, the hippo-
campi were outlined by a previously established protocol.35

To this end, the standard procedure applied in clinical trials
was followed for all subjects. The ROIs encompassing the
hippocampi were outlined in the coronal plane; then, fine-
tuning steps were performed using the sagittal view. The
hippocampal position was established using a MRI atlas
as Refs. 36 and 37. Features of the MRI atlas and its
distinction from other atlases have been previously reported.35

Separation of the anterior head of the hippocampus from
the amygdala was facilitated by the linea alba and inferior
limb of the lateral ventricle.38 For each subject, both of the
right and left hippocampi were segmented using MRIcro
by a research assistant who was trained on this task but
was blind to the video-EEG monitoring and other clinical
data. The hippocampus was traced posteriorly to include
the gyrus fasciola.39 Figure 4 shows a sample result of the
manual segmentation. Segmentation results were checked
and corrected if needed by a neuroscientist with expertise in

F. 2. Flowchart of the work: (1) skull stripping, (2) hippocampal segmentation by manual and automatic segmentation methods, (3) statistical validation by
voxel, distance, and volume measures, and (4) analysis of the results based on the input data.
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F. 3. Skull-stripping steps: (A) input images, (B) brain contouring, and (C) removal of nonbrain tissues.

hippocampal segmentation (a co-author of the paper). Tracing
of the right and left hippocampi boundaries per subject took
approximately 5 h by an experienced research assistant and
required optimal hand-eye coordination.9

3.C. Automated segmentation

The automated methods were applied to the images in
order to extract hippocampal volume. DICOM images were
converted by MRIcro to NIfTI format; then, the following
automated segmentation methods were applied to the images.

FreeSurfer version 5.3.0 was applied where the processing
steps included transformation into Talairach coordinates,
segmentation of the subcortical white matter and gray matter,
and removal of nonbrain tissues. , a technique based
on the minimization of the energy function for deformable
registration, was also applied. This method uses registration
to warp a statistical model to the target subject’s coordinate
framework. To compute the optimal segmentation, the
information from the warped atlas is used in combination
with a statistical intensity model.8 LocalInfo was applied
next. This approach is specifically designed for hippocampal
segmentation. Affine registration is applied in order to
represent the coordinates of the hippocampus in the atlas
mask. Finally, ABSS, a pattern-recognition algorithm was
applied for hippocampal segmentation. In this approach, shape
and signed-distance functions of the manually established
hippocampus are represented in different scales to train ANNs.
The trained ANNs are then applied to extract the right and
left hippocampi. Figure 5 shows the surface-rendered cortex

and the hippocampi of a 52 years old female with mTLE; the
hippocampi are segmented using the ABSS method.

3.D. Performance measures

The accuracy of different automated segmentation tech-
niques was assessed by comparison of their segmentation to
manual segmentation. Intraexpert and interexpert variabilities
of segmentation and quality evaluation were considered.40

Several performance metrics, widely used in the literature,
were considered to assess correlation and overlap between
automatic and manual segmentation results. Three groups of
measurements were implemented. The first involved voxel-
based metrics such as Dice coefficient, similarity, precision,
average symmetric surface distance (ASSD), sensitivity,
specificity, accuracy, negative predictive value, and rational
absolute value degree (RAVD). The second group was
composed of metrics based on distance evaluation such as
Hausdorff, Hausdorff 95, root mean square (RMS), and mean
distance (MD). In the third group, volume-based comparisons
were used to find the overlap between automated and manual
techniques in 3D. Among the extracted measures, those judged
most efficient in computing intuitively reasonable quantities
with a firm underlying theoretical basis were analyzed.

3.D.1. Measurements based on voxel

The similarity between automated and manual segmenta-
tion results can be assessed using overlap measures. One of
the most popular methods, used for comparing each of the

F. 4. Manual segmentation of the hippocampi using coronal T1-weighted MR images and a previously established segmentation protocol.

Medical Physics, Vol. 43, No. 1, January 2016



543 Hosseini et al.: Comparative performance evaluation of automated segmentation of hippocampus 543

F. 5. Surface rendering of the cortex (left) and segmented hippocampi
(right) of a 52 years old female with mTLE. The hippocampal segmentation
is performed using the ABSS method.

four automated methods against the gold standard, was based
on the Dice coefficient, defined as

Dice coefficient=
2N (A∩R)

N(A)+N(R) , (1)

where A and R represent the set of segmented hippocampal
voxels by automatic and manual methods and N , the relative
number of elements. In the binary case, each voxel can rate
as 1 for belonging to the structure or 0 as a background
voxel. The Dice coefficient ranges from 0 to 1, where 1 refers
to complete overlap. The volumes are measured by voxel
counts.

By definition, true positive (TP), the voxel proportion that
correctly determines the hippocampus; true negative (TN),
the voxel proportion of the background that segments as
background; false positive (FP), the voxel proportion of the
background that segments as hippocampus, and false negative
(FN), the voxel proportion of the hippocampus that segments
as background. Precision or positive predictive value was
defined as the number of true positive voxels for hippocampal
segmentation divided by the sum of both true positives and
false positives for voxel segmentation of the hippocampus,

Precision=
TP

TP+FP
. (2)

Another measure that is analogous to precision is similarity.
In this metric, FN, the voxel proportion of the hippocampus
that segments as background was added to thedenominator,

Similarity=
TP

TP+FP+FN
. (3)

Other metrics used include

Sensitivity=
TP

TP+FN
, (4)

Specificity=
TN

TN+FP
, (5)

Accuracy=
TP+TN

TP+FP+TN+FN
, (6)

Negative predictive value (NPV)= TN
TN+FN

. (7)

3.D.2. Measurements based on distance

The degree of resemblance of two images that are
superimposed on each other is determined by the Hausdorff
distance,41 which is the distance between two compact
nonempty subsets of a metric space42 and is calculated here
to find the similarity of automatic and manual segmentation
results. Given two closed and bounded subsets, A and R, of a
metric space M , the Hausdorff distance is defined as

H(A,R)=max(h(A,R), h(R,A)) (8)

where

h(A,R)=max min
a∈A, r ∈R

∥a− r∥ (9)

and ∥ · ∥ is some underlying norm on the points of A and R. As
H(A,R) diminishes, the overlap between A and R increases.
Due to outliers, the 95th percentile can be used for comparison
as Hausdorff 95.

RMS uses surface-to-surface geometrics to define a
distance metric. It is commonly used as a statistical measure
to show the magnitude of a varying quantity,

RMS(A,R)=


1
|SA|+ |SR| ×

*.
,


a∈S(A)

d2(a,SR)+


r ∈S(R)
d2(r,SA)+/

-
(10)

where SA denotes the set of surface voxels of A (automatic),
SR denotes the set of surface voxels of R (manual), and
d2(a,SA) is the squared nearest Euclidian distance from a
surface point “a” to the surface SA. This metric is based on
the distances between hippocampal surfaces extracted by two
segmentation algorithms. RMS is used to evaluate whether
the quantity of segmentation varies, so that the smaller its
value, the higher its similarity.

ASSD, calculated as the average distance of all contour
points which are segmented automatically to the closest
contour point of manual tracing, is as follows:

ASSD(A,R)= 1
|SA|+ |SR| ×

*.
,


a∈S(A)

d (a,SR)+


r ∈S(R)
d(r,SA)+/

-
(11)

where the notations are the same as for RMS.
For each voxel on the boundary of the automatic segmented

region, the distance to the closest voxel on the boundary of
the true label (manual) is found as dA. Using this vector, MD
is defined by

MD(A,R)=
NA
i=1

dA

NA
, (12)

where NA denotes the total number of voxels on the boundary
of the hippocampus which are segmented automatically.

3.D.3. Measurement based on volume

Reliability of automated techniques was evaluated by
volumetric assessment of the resulting hippocampal volumes.

Medical Physics, Vol. 43, No. 1, January 2016
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F. 6. Volume waveforms vs subjects for the right and left hippocampi (patients with Dice > 4.0), for the automated and manual methods.

For this, the volume of hippocampal structures was estimated
using each of the above techniques and compared to the results
obtained by the manual approach. To study the strength of
the correlation and similarity of the extracted volumes, the
Pearson cross correlation of two datasets as a function of
subject number was found using

r (VA,VR)= E
��

VA− µVA

��
VR− µVR

��

σVA
σVR

, (13)

where VA and VR are the volume generated by the automatic
and manual (reference) approaches, E is the expected value
operator, and σ is the standard deviation of the data. Figure 6

F. 7. A comparison of manual and automatic hippocampal segmentation methods. The figure shows an intermediate (first row, first column) section of a
skull-stripped T1 image of a mTLE patient. The first overlay (first row, second column) shows the manual segmentation, the second overlay (first row, third
column) shows the ABSS segmentation, the third overlay (second row, first column) shows the LocalInfo segmentation, the fourth overlay (second row, second
column) shows the FreeSurfer segmentation, and the last overlay (second row, third column) shows the  segmentation.
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T I. Performance measurements estimated for evaluating automatic segmentation methods.

Method Hausdorff Hausdorff 95 Dice Similarity Precision RMS Mean distance ASSD Sensitivity Specificity Accuracy NPV RAVD

Subject 1 ABSS 3.00 1.00 0.86 0.76 0.89 0.56 0.27 0.29 0.84 1.00 1.00 1.00 −0.06
LocalInfo 4.12 1.00 0.85 0.73 0.83 0.63 0.35 0.33 0.86 1.00 1.00 1.00 0.05
Freesurfer 7.55 3.74 0.70 0.53 0.93 1.45 0.46 0.89 0.56 1.00 1.00 1.00 −0.40
 12.21 2.45 0.71 0.55 0.78 1.31 0.72 0.77 0.65 1.00 1.00 1.00 −0.16

Subject 2 ABSS 4.24 1.41 0.83 0.72 0.78 0.69 0.44 0.38 0.89 1.00 1.00 1.00 0.13
LocalInfo 4.58 1.41 0.81 0.67 0.75 0.75 0.49 0.44 0.87 1.00 1.00 1.00 0.17
Freesurfer 7.07 4.24 0.66 0.50 0.79 1.51 0.61 0.97 0.57 1.00 1.00 1.00 −0.27
 11.00 4.00 0.67 0.50 0.68 1.52 0.99 0.90 0.66 1.00 1.00 1.00 −0.03

Subject 3 ABSS 7.62 2.24 0.73 0.58 0.79 1.00 0.50 0.59 0.69 1.00 1.00 1.00 −0.13
LocalInfo 31.89 27.31 0.06 0.03 0.04 14.74 14.32 12.07 0.11 1.00 1.00 1.00 1.36
Freesurfer 11.18 6.08 0.58 0.41 0.75 2.16 0.71 1.34 0.48 1.00 1.00 1.00 −0.37
 11.49 6.00 0.42 0.27 0.47 2.71 1.78 1.92 0.38 1.00 1.00 1.00 −0.19

Subject 4 ABSS 7.14 4.24 0.73 0.58 0.74 1.48 0.70 0.87 0.72 1.00 1.00 1.00 −0.03
LocalInfo 6.71 3.74 0.69 0.53 0.68 1.45 0.83 0.95 0.71 1.00 1.00 1.00 0.05
Freesurfer 11.22 7.28 0.63 0.46 0.75 2.49 0.69 1.53 0.54 1.00 1.00 1.00 −0.28
 11.22 4.69 0.64 0.47 0.66 2.00 1.10 1.27 0.62 1.00 1.00 1.00 −0.07

shows the extracted volume waveform per subject for the
manual and FreeSurfer techniques, separated for the right
and left hippocampi. For modeling the relationship between
scalar arrays of extracted volumes by automated and manual
approaches, a linear regression was found. To analyze the
“agreement” between automated and gold standard (i.e.,
manual) results, the Bland–Altman plot was used. To this
end, the horizontal and vertical axes were defined as

(x,y)=
(

VR+VA

2
,VR−VA

)
, (14)

where VR is the volume segmented manually and VA is the
volume segmented by an automatic approach.

Finally, by the same notation, the RAVD is defined as

RAVD=
VA−VR

VR
. (15)

4. RESULTS AND ANALYSIS

A comparison of manual and automatic hippocampal
segmentation methods from a representative mTLE case is
presented in Fig. 7. All methods (software) were applied in
the manner suggested by the software developer, i.e., without
any initialization by the user; the inputs to the software
were the anatomical T1-weighetd images only. As a visual
demonstration of good and poor performances, it represents a
typical case where ABSS outperforms the other methods.

Different performance measurements were extracted and
calculated for each of the segmentation methods from the
T1-weighted images of the mTLE subjects. The resulting
Hausdorff, Hausdorff 95, Dice, similarity, precision, RMS,
mean distance, ASSD, sensitivity, specificity, accuracy, NPV,
and RAVD values are presented in Table I. Dice, Hausdorff,
precision, and RMS produced values that were felt to fulfill a
reasonable basis for analysis.

Figure 8 compares the extracted volumes by linear
regression per subject and Fig. 9 shows the resulting
Bland–Altman plots. Table II summarizes the results in
terms of the mean and standard error of the Dice coefficient,
Hausdorff distance, precision, and RMS. The Dice coefficient
of the evaluated methods by case number is shown in
Fig. 10(A). A value less than 0.4 represents an unacceptable
overlap with the established gold standard. Such cases
were removed from analysis [Fig. 10(B)]. Figure 11 shows
precision, Hausdorff, and RMS values for each of the
methods. Overall analysis of the voxel and distance-based
measures, excluding precision, confirms that ABSS provides
more correlation, overlap, and reproducibility than the other
methods.

The Dice coefficient for ABSS is 5.13% (p-value < 2
×10−3), 14.10% (p-value < 5×10−33), and 16.67% (p-value
< 2×10−47) higher compared to LocalInfo, FreeSurfer, and
, respectively. The ABSS method of segmentation,
therefore, is shown to have more overlap with the gold
standard than the other methods. The Hausdorff distance
for ABSS is 22.65% (p-value < 3×10−2), 86.73% (p-value
< 7×10−19), and 69.58% (p-value < 2×10−11) lower compared
to LocalInfo, FreeSurfer, and , respectively, also
confirming that the ABSS automated segmentation method
better approximates the gold standard. The precision for
ABSS is 4.94% (p-value < 3× 10−10), −4.94% (p-value
< 3×10−8), and 12.35% (p-value < 2×10−21) higher compared
to LocalInfo, FreeSurfer, and , respectively. That
obtained using Freesurfer ranked the highest. The RMS
distance for ABSS is 19.05% (p-value < 2×10−2), 61.90%
(p-value < 6×10−18), and 65.08% (p-value < 5×10−16) lower
compared to LocalInfo, FreeSurfer, and , respectively,
demonstrating less variation in values than the other
competing methods. Since all methods were paired for
comparison, the differences among groups were analyzed
by ANOVA. The standard ANOVA is illustrated in Table III
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F. 8. Hippocampal volumes (mm3) estimated by the manual and automated methods for the left and right hippocampi and their linear regression.

and a graphical depiction of groups for each measurement in
157 subjects by quartile is shown in Fig. 12. The statistical
significance of the model which is shown by a large F and
small values of p correspond to a large difference in the center
lines of the boxplots.

Table IV shows the mean and standard deviation of
the segmented volumes, correlation coefficients for each
hippocampus (left-to-right ratio), and the limits of agreement
with a benchmark for each of the methods. Bias as a source
of systematic difference between two methods is identified.
The volumes generated by each of the automatic methods
compared to those obtained by manual means are shown in
Fig. 13. This scatterplot shows FreeSurfer to have extracted
larger volumes than the other methods.

Although ABSS is shown here to be superior to other
segmentation methods by the statistical methods applied, it
may not be the best method in all cases. From the numerical
data, we know that there are a few cases in which other
methods outperformed ABSS. Figure 10(B) and 11 reveal that
for subject numbers 107, 166, and 23, , FreeSurfer,

and LocalInfo, respectively, produced better segmentation
than ABSS. The segmentation of these cases is shown in
Fig. 14. Evaluations of these cases reveal features that create
flaws in the ABSS segmentation methodology. Incomplete
imaging in the coronal view for case number 23 rendered
a truncated image of the posterior hippocampal region.
Reliance on precise skull-stripping for the ABSS method
created the suboptimal result for case number 166 where
poor skull-stripping resulted in a dark region in the inferior
aspect of the brain. In case number 107, unusual shapes
of the left and right temporal lobes rendered inaccurate
segmentation because of a reliance upon a relatively normal
morphology.

5. DISCUSSION

Automated techniques for hippocampal segmentation have
been developed in the research community to reduce the
time-consuming workload and improve upon reproducibility
because of the variability encountered in the manual method.
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F. 9. Bland–Altman plots comparing manual results versus the following: ABSS (first row, first column), LocalInfo (first row, second column), FreeSurfer
(second row, first column), and  (second row, second column) results for the left and right hippocampi.

There has been consensus that manual measurement of the
hippocampal volume is, however, more accurate than the
automated techniques because of the better visual definition of
the hippocampal margins37 and that it remains the ground truth
(gold standard) currently.43 Automated methods, on the other
hand, promote operator independence, higher reproducibility,
and improved clinical applicability.15 Their application will
be judged valid if they provide results comparable to those
obtained by the manual contouring of the structure.44 A
reliable, objective, and reproducible technique for automated
hippocampal segmentation, in particular, would expedite the
confident processing of absolute volumes in clinical cases in
order to judge the degree of bihemispheric asymmetry and
establish the degree of atrophy over time.

Relatively few studies have compared results of the
automated hippocampal segmentation methods with those
of manual tracing in epilepsy cases.32,39 Several automated

T II. Mean and standard error of different measures.

ABSS LocalInfo FreeSurfer 

Dice 0.78 ± 0.01 0.74 ± 0.01 0.67 ± 0.01 0.65 ± 0.01
Hausdorff 3.09 ± 0.20 3.79 ± 0.23 5.77 ± 0.20 5.24 ± 0.23
Precision 0.81 ± 0.01 0.77 ± 0.01 0.85 ± 0.01 0.71 ± 0.01
RMS 1.26 ± 0.06 1.50 ± 0.08 2.04 ± 0.06 2.08 ± 0.07

hippocampal segmentation methods have been proposed
in the literature; however, most have been tested only
in nonepileptic subjects. FreeSurfer was shown to have
greater accuracy than FSL/FIRST especially in the head
and tail portions of the hippocampus when compared to
manual tracing in nonepileptic subjects.45 Its feasibility in
distinguishing hippocampal volumes in the young adult
was also confirmed.46 Both the volume and shape of the
hippocampi change in several neuropsychiatric conditions
and in pathologic brains such as mTLE. Difficulties arise
in the accurate delineation of the hippocampal boundaries
under some of these circumstances. Further estimation of the
efficacy of the automated methods must, therefore, be obtained
to undertake a proper assessment of their applicability.
Few reports of automated hippocampal segmentation in
cases affected by mTLE have been published.20,39,47,48 In
this study, four automated methods were compared against
the manual approach using 195 mTLE cases to provide
a robust comparative analysis of their respective perfor-
mances.

Analysis of voxel-, distance-, and volume-based metrics
shows that ABSS and LocalInfo are more accurate
segmentation methods in the case of mTLE. According
to the Dice coefficient, Hausdorff distance, and root mean
square distance,  and FreeSurfer were discovered
to be less accurate. FreeSurfer was more precise than
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F. 10. Dice coefficient of the four automatic segmentation methods (FreeSurfer, , LocalInfo, ABSS) vs case number for the following: (A) all 195
mTLE patients and (B) 157 mTLE patients with Dice > 0.4. Since those cases with unacceptable automated segmentation outcomes were evaluated separately,
they were removed in (B) of this figure and the subsequent figures.

LocalInfo and ; however, when other parameters
were engaged, this advantage was not sustained. This result
was predictable because FreeSurfer segments larger regions
than other automated methods and manual segmentation.
True positive values and, ultimately, precision increase
under these circumstances. Consequently, precision is not
as meaningful as other measures in the evaluation of
the hippocampal segmentation results. A combination of
several metrics would be a better overall measure of perfor-
mance.

Bland–Altman plots were used to compare the automated
segmentation results with the gold standard and assess
agreement among the automated methods by investigating
the existence of any systematic differences with a fixed bias.
The mean value of the difference of the evaluated techniques
from the gold standard shows the presence of a fixed bias
on the basis of the one-sample t-test. A high correlation
would not always indicate that there was a good agreement
with the gold standard.  and ABSS showed a very
weak linear relationship and cross-correlation with the manual

F. 11. Precision (A), Hausdorff distance (B), and RMS (C) of the four automatic segmentation methods (ABSS, LocalInfo, Freesurfer, ) vs case
number for 157 mTLE patients with Dice > 0.4, sorted by case numbers.
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T III. The standard ANOVA table. The source of variability is indicated in the second column. The third
column comprises the sum of squares (SS) due to each source and the fourth column, the degrees of freedom (df)
associated with each source. The mean squares (MS), which is the ratio SS/df, is shown in the fifth column. The
ratio of the mean squares is shown as the F-statistic in column number six, and finally, the last column is the
p-value derived from the cumulative distribution function of F .

Measurements Source
Sum of squares

(SS)
Degree of freedom

(df)
Mean squares

(MS) F-statistic p-value

Dice Columns 1.66 3 0.55 94.13 2.91 × 10−50

Error 3.67 624 5.89 × 10−3 — —
Total 5.33 627 — — —

Hausdorff Columns 730.41 3 243.47 32.83 1.03 × 10−19

Error 4627.01 624 7.415 — —
Total 5357.42 627 — — —

Precision Columns 1.62 3 0.54 76.75 2.89 × 10−42

Error 4.39 624 7.04 × 10−3 — —
Total 6.01 627 — — —

RMS Columns 76.89 3 25.63 34.92 7.11 × 10−21

Error 457.96 624 0.73 — —
Total 534.85 627 — — —

results. Some limitation in agreement and a fixed bias in this
circumstance must be considered. Greater agreement between
ABSS and LocalInfo is evident than with the manual technique
when the mean difference is considered as the estimated bias.
The left/right hippocampal ratios show a large bias in several
mTLE cases, although they approximate unity in control cases.
Left to right hippocampal ratios remove considerations of the
brain size through normalization.49 These were found not to
change significantly among the automated methods compared
to those of the manual method. Therefore, the automated

methods are thought to work well with ratio metrics in the
analysis of asymmetry.

ABSS as a label assignment technique provides a
robust segmentation in comparison to other techniques.
Such machine-learning techniques search to choose the
best labels as ROIs, minimizing disagreement with true
segmentations of example images.50 ABSS segments are
based on an interconnected group of artificial neurons and it
models complex relationships between inputs and outputs by
supervised learning. The generalization capability of machine-

F. 12. Graphical depiction of groups using Dice (first row, first column), Hausdorff (first row, second column), precision (second row, first column), and RMS
(second row, second column) on 157 subjects by quartile. Outliers are plotted by a plus sign.
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T IV. Summary of the means and standard deviations of hippocampal volumes, cross correlation with the manual method, left-to-right ratios, limits of
agreement, and bias between automatic and manual methods.

Hippocampal volume (voxel) Cross-correlation

Left Right Left Right
Left-to-right

hippocampal ratio
Limits of agreement with

manual (voxel) Bias (voxel)

Manual 2499.37 ± 798.35 2577.43 ± 742.58 — — 0.96 — —
ABSS 2552.16 ± 521.25 2672.40 ± 542.56 0.97 0.98 0.95 [−842.37; 1001.21] 79.42
LocalInfo 2728.33 ± 610.43 2713.90 ± 595.13 0.96 0.97 1.00 [−842.37; 1001.21] 153.19
FreeSurfer 3727.91 ± 1011.63 3763.47 ± 854.27 0.97 0.98 0.99 [87.09; 2387.15] 1237.12
 2601.63 ± 606.47 2501.97 ± 789.94 0.93 0.94 1.04 [−1343.07; 1649.45] 445.19

learning algorithms offers some theoretical insight into the
reasons underlying the superior performance of ABSS. This
machine-learning approach provides for training by several
different atlases, comprised of both normal subjects and
patients, and finds hypotheses that explain past observations
to make accurate predictions. A weak point for some methods,
such as FreeSurfer and LocalInfo, which require registration,
will be certain details that may be lost as a high degree of
variability is not allowed because of the regularization used
in registration.51 Moreover, in these techniques, where one-
to-one mapping between the input image and all anatomical
images of atlases is not possible, a registration-based labeling
framework inevitably will create incorrect labels. Also, due
to the inherent registration errors, local incorrect matching
can lead to segmentation errors.52 Another shortcoming of
methods using label fusion techniques, such as LocalInfo,
may arise through the same weighting applied to all samples
wherein the criterion-based voting procedure is sensitive to
registration error.53 These are limitations not shared by ABSS
which will have reduced segmentation errors relative to the
other methods.

In the literature, segmentation techniques have often been
tested with few subjects and a small database. Therefore,
such studies may have been biased toward good results. The
present study employs a large dataset and has evaluated the
segmentation methods with both nonpathological material
and real patient data. This approach has been supported in

F. 13. Visual comparison of the hippocampus volumes (mm3) estimated by
the automated segmentation methods vs ground truth (manual segmentation).

the literature.48,54 In comparison to manual segmentation,
the results of automatic segmentation remain relatively weak
but, with continuing improvement, their applicability supports
growing acceptance.48

Among 195 subjects, 38 could not be segmented efficiently
at least by one of the automated methods as their Dice
measure was less than 0.4. We evaluated the input MR images
slice-by-slice to find the reason for this inability. The in-
plane resolutions and slice thicknesses were evaluated. Their
orientation using ImageJ and MRICro was checked and, in
some cases, the vendors contacted to discuss possible sources
of error. The ABSS method showed acceptable segmentation
performance for all subjects, always demonstrating more than
40% coverage agreement between manual and automated
segmentations while other methods failed adequate agreement
in some subjects. The results show that ABSS, as a
pattern-recognition technique, has the ability of learning
and adapting to the manual segmentation and to produce
acceptable results. Since there has been controversy over
the manual segmentation method to be used in particular
imaging studies,55 the automatic methods that have learning
ability would be able to adjust to specific definitions of a
structure and thus would greatly benefit the neuroimaging
community.56

The input conditions of those cases with unacceptable
segmentation results (i.e., Dice < 0.4) were addressed and
categorized into four groups (see Fig. 15): (1) incomplete
imaging that affected all automated methods, (2) an artifact
with an interference pattern posed further difficulties as
addressed in Ref. 57. Among the known MRI artifacts in
the case of hippocampal segmentation are motion, vascular
pulsation, susceptibility, chemical shift, Gibbs ringing, RF
overflow, partial volume, cross-excitation, shading, zebra
stripes, and zipper artifacts,58 (3) poor image quality
further added to the problem. Subjects with an extensive
childhood stroke, a large dysplastic hippocampus, or those
with extensive subependymal heterotopia are examples of
conditions contributing to the latter. In this category, some
of the heterotopic gray matter could be misclassified as
hippocampus. An extensive stroke affecting the hippocampus
can result in significant change with resulting poor image
quality as was noted in one of our cases that proved to
be an outlier, (4) field inhomogeneity or image distortion
with signal loss, created by magnetic material inside or
outside the patient or scanning at the edge of the field. Apart
from the above technical issues, methods of skull stripping
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F. 14. Segmentation results of other methods in cases that they outperformed ABSS. For subject numbers 107, 166, and 23, , FreeSurfer, and LocalInfo,
respectively, produced better segmentation than ABSS.

also vary in their performance. The adjacent membranes or
meninges surrounding the brain are found to be variably
stripped and may contribute to volumetric alterations. Minor
field inhomogeneities may be corrected before the application
of the segmentation algorithms.

Some limitations of this study require accounting.
FreeSurfer and  use atlases which differ from those
used with LocalInfo and ABSS. This may account for some
difference in the average hippocampal volume obtained by
each method. Such differences, however, do not hinder an

F. 15. Four categories of input images in which segmentation output is unfavorable: (A) incomplete image set, (B) image with artifact, (C) noisy, low-quality
image, and (D) inhomogeneous image.
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assessment of performance of each method as it compares to
the results obtained by the manual method. The comparisons
drawn with the dice coefficients between the automated
and manual methods are meant to declare which method
should be preferred. Another limitation concerned manual
tracing itself as the gold standard for segmentation given the
inherent difficulties with inconsistent labeling across the slice
direction.8 This matter was addressed by the selection of 195
high-quality manually segmented cases where clearly defined
anatomical landmarks could be ascertained.

After analyzing the structure and functionality of the
automated methods, we divided them to four general groups:
(1) mapping and registration based on single or multiatlas;
(2) pattern-matching based on information registration; (3)
shape-fitting based on energy minimizing; and (4) label
assignment based on pattern recognition and machine
learning. By considering the input conditions of those cases
with unacceptable segmentation results, some modifications
can be devised and suggested that would enhance performance
through improved reliability and reproducibility. The accuracy
of atlas-based segmentation methods is dependent upon
the scanner platform and pulse sequence that vary with
the chosen atlas. Intensity normalization can be used to
adjust the atlas intensity model of segmentation to new input
data.59 Furthermore, a specific protocol can be established
to define the hippocampus anatomically in vivo using a
multitemplate fusion approach driven by expert manual
labels.55 In the pattern-matching approaches, prior statistical
information regarding the target shape can be used to
guide the dynamic wrapping behavior of the deformable
structures. A hybrid method to combine an evolutionary
heuristic and a general elastic template-matching approach
has been developed to improve these algorithms.19 Energy
minimizing techniques would benefit by defining a new
term in their energy function to address a bias field
for intensity inhomogeneities. A local clustering criterion
function in the level set functions has been suggested to
address intensity properties with respect to the neighborhood
center in MR images.60 Finally, there have been new ideas to
improve pattern recognition techniques of segmentation based
on image conditions. These have included computational
models of fuzzy clustering, possibilistic clustering, geo-
statistics, and knowledge combination.61 Supervised frame-
works for segmentation using a probabilistic boosting tree
classifier62 and autocontext information, combining multiple
dynamic models and deep learning architecture,63 are some
examples.
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