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Abstract—Clouds provide the abstraction of nearly-unlimited
computing resources through the elastic use of federated resource
pools (virtualized datacenters). They are being increasingly con-
sidered for HPC applications, which have traditionally targeted
grids and supercomputing clusters. However, maximizing energy
efficiency and utilization of cloud datacenter resources, avoiding
undesired thermal hotspots (due to overheating of over-utilized
computing equipment), and ensuring quality of service guaran-
tees for HPC applications are all conflicting objectives, which
require joint consideration of multiple pairwise tradeoffs. The
novel concept of heat imbalance, which captures the unevenness
in heat generation and extraction, at different regions inside
a HPC cloud datacenter is introduced. This thermal awareness
enables proactive datacenter management through prediction of
future temperature trends as opposed to the state-of-the-art reac-
tive management based on current temperature measurements.
VMAP, an innovative proactive thermal-aware virtual machine
consolidation technique is proposed to maximize computing
resource utilization, to minimize datacenter energy consumption
for computing, and to improve the efficiency of heat extraction.
The effectiveness of the proposed technique is verified through
experimental evaluations with HPC workload traces under single-
as well as federated-datacenter scenarios (in the machine rooms
at Rutgers University and University of Florida).

Index Terms—Virtualized datacenters, thermal awareness, heat
imbalance, consolidation.

I. INTRODUCTION

Datacenters are a growing component of society’s IT infras-

tructure and their energy consumption surpassed 237 billion

kWh/year worldwide and 76 billion kWh/year in the US in

2010 [1]. Even though these numbers are lower than what the

US Environmental Protection Agency predicted in 2007 [2],

they correspond to 6% and 2% of the total electricity usage in

the US. The impact of this proliferation of datacenters on the

environment and society includes increase in CO2 emissions,

overload of the electricity supply grid, and rise in water

usage for cooling leading to water scarcity [3]. The scale and

complexity of datacenters are growing at an alarming rate and

their management is rapidly exceeding human ability, making

autonomic (self-configuration, self-optimization, self-healing,

and self-protection) management approaches essential.

High-Performance Computing (HPC) applications are

resource-intensive scientific workflow (in terms of data, com-

putation, and communication) that have typically targeted

Grids and conventional HPC platforms like super-computing
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clusters. Clouds – composed of one or more virtualized

datacenters providing the abstraction of nearly-unlimited com-

puting resources through the elastic use of federated resource

pools – are being increasingly considered to enable traditional

HPC applications. However, maximizing energy efficiency and

utilization of cloud datacenter resources, avoiding undesired

thermal hotspots (due to overheating of over-utilized comput-

ing equipment), and ensuring Quality of Service (QoS) guaran-

tees for HPC applications are all conflicting objectives, which

require joint consideration of multiple pairwise tradeoffs.

From our feasibility study and proof-of-concept experiments

conducted at our machine room in the NSF Cloud and Au-

tonomic Computing Center (CAC), Rutgers University, we

have inferred that one of the fundamental problems in HPC-

cloud datacenters is the local unevenness in heat-generation

and heat-extraction rates: the former can be attributed to

the non-uniform distribution of workloads (of different types

and intensities) among servers and to the heterogeneity of

computing hardware; the latter can be attributed to the non-

ideal air circulation, which depends on the layout of server

racks inside the datacenter and on the placement of Computer

Room Air Conditioning (CRAC) unit fans and air vents. The

heat-generation and -extraction rates may differ, which over

time causes heat imbalance. This heat imbalance will be large

if the rates are significantly different from each other or if

their difference prolongs over extended time periods.

A large negative heat imbalance at a particular region inside

a datacenter will result in energy-inefficient overcooling and,

hence, in a significant decrease in temperature. Conversely,

a large positive heat imbalance will lead to a significant

temperature increase, which may result in undesired thermal

hotspots and server operation in the unsafe temperature range.

Thus, thermal awareness, which is the knowledge of heat

imbalance at different regions inside a datacenter, is essential

to maximize energy and cooling efficiency as well as to

minimize server system failure rate. Our novel concept of heat

imbalance enables proactive datacenter management decisions

(such as resource provisioning, cooling system optimization)

through prediction of future temperature trends as opposed to

the state-of-the-art reactive management decisions based on

current temperature measurements.

In virtualized HPC datacenters, one or more Virtual Ma-

chines (VMs) are created for every application request (with

one or more workloads) and each VM is provisioned with



resources that satisfy the application QoS requirements, which

are based on Service Level Agreements (SLAs). Once VMs

are provisioned, they have to be allocated to servers. We

propose a novel thermal-aware proactive VM consolidation

solution referred to as VMAP. The benefit of employing

VMAP is three-fold: i) energy spent on computation can be

saved by turning off the unused servers after workload (or

VM) consolidation; ii) the utilization of servers that are in

the “better cooled” areas of the datacenters (with high heat

extraction) can be maximized; iii) heat can be extracted more

efficiently (by doing a lower amount of work) by the CRAC

system from the consolidated server aisles, which are hotter

than non-consolidated server aisles. Note that (iii) is possible

due to the fact that the efficiency of heat extraction increases

with increase in return-air temperature.

VMAP also exploits the heterogeneity in the cloud infras-

tructure (federated datacenters) – in terms of electricity cost,

hardware capabilities (CPU, memory, disk I/O, and network

subsystems), tunable parameters of the CRAC system, and

local regulations (governing CO2 emission and water usage) –

to maximize energy efficiency. VMAP is aimed at increasing

the energy and cooling efficiency and at decreasing equipment

failure rates so to minimize both the impact on the environment

and the Total Cost of Ownership (TCO) of datacenters. VMAP

can significantly contribute to energy efficiency (9%, 9%, and

35% average reduction in energy consumption compared to

the traditional temperature-based reactive thermal management

schemes: first-fit-decreasing, best-fit-decreasing, and “cool-

job” [4] allocation, respectively) while not violating recom-

mended operating temperature range. The following are the

main contributions of our work.

• We introduce the novel notion of heat imbalance and

validate a simple yet robust heat-imbalance model, which

helps predict future temperature trends and make proac-

tive resource provisioning decisions;

• We propose a proactive thermal-aware VM consolida-

tion solution, VMAP (for self-optimization of computing

resources), which minimizes energy consumption for

computation, increases resource utilization, and improves

efficiency of cooling;

• We validate our proposed approach through extensive ex-

periments – in a single-datacenter as well as in federated-

datacenters (at different sites of NSF CAC, Rutgers

University and University of Florida).

The remainder of this paper is organized as follows: in Sect.

II, we outline our broader vision for thermal-aware autonomic

datacenter management; in Sect. III, we present details on the

design and validation of our heat-imbalance model; in Sect.

IV, we describe our proposed thermal-aware VM allocation

scheme (VMAP); in Sect. V, we study the performance of

VMAP using experiments and simulations; in Sect. VI, we

present an overview of the state of the art in autonomic

thermal-aware management of datacenters; and finally, in Sect.

VII, we briefly discuss future work and conclude.
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Fig. 1. Envisioned cross-layer approach to autonomic management of
virtualized datacenters. The main focus of this paper is indicated in red boxes.

II. PROPOSED APPROACH

We propose a proactive cross-layer approach to auto-

nomic datacenter management, which is information centric

and requires continuous processing and analysis of real-time

feedback from multiple layers of abstraction (as depicted in

Fig. 1). The application layer provides information regarding

the applications’ (and, hence, the workloads’) characteristics

such as their computing resource requirements, energy con-

sumption, and performance on different hardware platforms.

Modern blade servers (hardware resource layer) are equipped

with a number of internal sensors that provide information

about server fan speed and subsystem operating temperatures

as well as utilization. However, information extracted from

the application and hardware resource layers alone cannot

capture the complex thermodynamic phenomena of heat and

air circulation inside a datacenter.

Information from the environment layer, comprising of an

heterogeneous sensing infrastructure (with scalar temperature

and humidity sensors, thermal cameras, and airflow meters)

is key to characterize the thermal behavior of a datacenter

under a given load (information from the application layer)

[5]. As mentioned earlier, the estimation of heat imbalance

requires estimation of the heat-generation and heat-extraction

rates. The heat-generation model exploits the information

provided by the application layer while the heat-extraction

model leverages information provided by the environment as

well as hardware resource layers. The virtualization layer –

which provisions, allocates, and manages VMs (created based

on application requests) – exploits the knowledge of heat

imbalance to predict future temperature trends for optimal

resource allocation in datacenters. In this paper, we focus on

the design and validation of the heat-imbalance model and

on how the knowledge of heat imbalance can be exploited

to perform energy-efficient proactive VM consolidation in

datacenters (shown in red boxes in Fig. 1).

While proactive VM consolidation has several clear advan-

tages, namely, reduced energy cost for computation (through

high utilization of fewer computing resources) as well as for



cooling (through better heat extraction at higher operating

temperatures), it has certain drawbacks. Increased utilization of

servers results in continuous operation of computing hardware

at temperatures close to the upper bound of the recommended

operating temperature range. This, however, is not a major

concern due to the following reasons: i) manufacturers usually

provide a conservative upper bound for the recommended

operating temperature range; ii) our consolidation solution is

thermal-aware and does not let the operating temperatures

go beyond the recommended range (referred to as thermal

violation) unlike other temperature-agnostic solutions; iii) the

frequency of equipment upgrades (due to tremendous rate

of innovation in computing hardware) is much higher than

the rate of replacement due to failures. Last, but not least,

our heat-imbalance based predictive approach allows us to

create a fingerprint of expected hotspots inside the datacenter.

This fingerprint can then be used for detecting anomalies

such as mis-configuration of servers (mismatch between VM

allocation decision and the actual allocation) and/or attacks

(unidentified VMs running illegitimate workloads on servers)

in the thermal domain.

Another drawback of traditional server consolidation is

violation in SLAs (in terms of application runtime) due to

greater resource contention at higher utilization levels. How-

ever, this is not a concern for virtualized HPC clouds as

i) users are guaranteed the resources they specifically ask

for, ii) VMs are isolated from each other, and iii) we do

not multiplex resources, i.e., the total subsystem utilization

of all VMs in a server will not exceed the total subsystem

capacity of that server. In our prior work [6], we have shown

through simulations that heat-imbalance-based proactive data-

center management (cooling system optimization) is superior

in terms of energy efficiency and minimization of risk of

equipment failures compared to its conventional temperature-

measurement-based reactive counterpart. Our envisioned ap-

proach represents a transformative shift towards cross-layer

autonomics for datacenter management problems, which have

so far been considered mostly in terms of individual layers.

In this paper, we first focus on our novel heat-imbalance

model, which incorporates information from the application,

hardware resource, and environment layers. We then present

our heat-imbalance-based proactive VM allocation solution,

which resides in the virtualization layer.

III. HEAT-IMBALANCE MODEL

A VM is created for every application request and is

provisioned with resources (CPUs, memory, disk, and network

capacity) that satisfy the application’s QoS (usually deadline)

requirements. Without any loss of generality, we assume that

this provisioning has already been performed using techniques

such as the ones described in [7]. The provisioned VMs now

have to be allocated to physical servers housed within racks

in datacenters. Let M be the set of VMs to be allocated

and N be the set of servers. An associativity binary matrix

A = {amn} (with amn ∈ {0, 1}) specifies whether VM m is

hosted at server n or not. A VM m is specified as a vector

Γm = {γs
m}, where s ∈ S = {CPU,MEM, IO,NET}

refers to the server subsystems and γs
m’s are the VM subsystem

requirements (e.g., CPU cores, amount of volatile memory

[MB], disk storage space [MB], network capacity [Mbps]).
Representation (or mapping) of a VM’s subsystem re-

quirement (γs
m) as a factor of physical server subsystem

capacity is straightforward if all the servers of the datacenter

are assumed to be homogeneous. For example, a VM m

requiring 4 virtual CPUs, 2GB of RAM, 64GB of hard-disk

space, and 100Mbps network capacity can be represented

as Γm = {0.25, 0.125, 0.125, 0.1} if all the servers in a

datacenter have 16 CPU cores, 16GB of RAM, 512GB of local

hard-disk space, and a gigabyte ethernet interface. However,

homogeneity is rarely the case as datacenters usually have

a few different generations of each subsystem, for exam-

ple, CPUs with different clock rates and number of cores

(1.6/2.0/2.4 GHz and 4/8/16/32 cores), different generations

or sizes of RAMs (SDR/DDR SDRAM or sizes ranging from

4 to 32 GB), network switches of varying capacities (0.1, 1, or

10 Gbps), etc. The mapping problem becomes non trivial in

an heterogeneous environment. However, assuming that only

a small finite number of generations of each subsystem are

present in the datacenter, we create such a mapping for each

generation of every subsystem.

Estimation of heat-generation rate: The total power dis-

sipation of a server is estimated based on power dissipation as

heat at the CPU and other subsystems. All the subsystems are

composed of semiconductor devices, hence we can calculate

the leakage power dissipated as heat Pleak as given in [8];

Pleak provides us with the direct relation between the subsys-

tem utilization and heat dissipation. The heat dissipation factor

of a server subsystem is given by αs =
P s

leak

P s , where P s [W] is

the average power utilized and P s
leak [W] is the leakage power

for subsystem s. When Advanced Configuration and Power

Interface (ACPI) [9] is enabled, a subsystem can potentially

transition between multiple ‘on’ and ‘idle’ states (apart from

the ‘off’ state). As power management is an operating system

functionality, we abstract the details and use the following

power utilization model. The average power utilized by the

subsystems is given by P s = P s,on · us + P s,idle · (1 − us),
where P s,on [W] is the average power utilization when sub-

system s is in ‘on’ state, P s,idle [W] is the average power

utilization when the subsystem is in idle state, and us is the

subsystem utilization factor.

The average power utilization of a subsystem on a server

n running a set of VMs is determined by the subsystem ‘on’

time ts,on = f(
∑

m∈M amn · γs
m, n, s). Here, the γs

m used

takes into account the appropriate generation of subsystem in

use as specified earlier. The utilization factor for a given δ =
ts,on + ts,idle is given by us = ts,on

δ
[s]. The heat-generation

rate hn [W] at a server n hosting a set of VMs is given by,

hn =
∑

s∈S

[P s,on
n · us

n + P s,idle
n · (1− us

n)] · α
s
n. (1)

Estimation of heat-extraction rate: Heat is extracted by

the fans in the server enclosure and by the fan in the CRAC
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Fig. 2. Empirical data collected from servers at RU – (a) power consumption,
(b) CPU and external (inlet and outlet) temperatures, and (c) calculated heat
imbalance – when a representative CPU-intensive workload is run at different
CPU utilization levels. (d) Relationship between ∆T and CPU utilization
using data from both RU and UFL servers.

unit. Most datacenters use chilled-water air conditioning sys-

tem. The efficiency of cooling can be determined by factors

such as airflow and chilled water temperature, and can be

quantified by the Coefficient Of Performance (COP)1. As the

COP is inversely proportional to W , a higher COP means that

more heat Q can be removed by doing less work W [4]. As the

CRAC supply temperature increases, the COP also increases

(in compliance with the second law of thermodynamics). The

rate of heat extraction qn [W] at a server n given by,

qn = min
n · cp · (T

out
n − T in

n ), (2)

depends on the mass air flow rate (min
n ) at the cold air inlet of

1COP = Q

W
is the ratio of amount of work done by the CRAC unit (W

[kWh]) to extract a unit quantity of heat (Q [kWh]).

the server and on the temperatures at the cold-air inlet (T in
n )

and hot-air outlet (T out
n ). Here, cp is the specific heat capacity

of air. In our solution, we use the current measurements for

min
n and T in

n obtained from air flow meters and external

temperature sensors, respectively, of our multi-tier sensing

infrastructure (environment layer).

Estimation of heat imbalance: We formulate the heat-

imbalance model in a datacenter based on heat-generation and

heat-extraction rates as follows,

∆In =

∫ t0+δ

t0

(hn − qn)dt = Mn · C ·∆Tn
[t0,t0+δ], (3)

where ∆In [J] denotes the heat imbalance of CPU inside

server n during the time between t0 and t0 + δ, and Mn and

C denote the mass and specific heat capacity, respectively,

of the CPU. Note that if ∆In is positive (i.e., hn > qn),

the temperature of the CPU at server n increases in the time

interval [t0, t0 + δ] (hence, ∆Tn > 0); conversely, if ∆In is

negative (i.e., hn < qn), the temperature of the CPU at server

n decreases (hence, ∆Tn < 0).

This estimated heat imbalance helps us predict the increase

or decrease in temperature, given by ∆Tn, to take manage-

ment decisions such as VM placement, VM migration, and

cooling system optimization.

Validation of the proposed models: Certain parameters

in the proposed heat-imbalance model are determined empir-

ically as they cannot be obtained directly (e.g., from server

specification documents). The heat dissipation factor α in (1)

is one of the key parameters that is determined empirically.

Similarly, the server outlet temperature Tout in (2) varies with

time and is a function of CPU temperature, which is what

the heat-imbalance model is designed to estimate. Hence, the

relationship between T out and ∆T is determined empirically

(assuming T in is known and is constant in the time interval

[t0, t0 + δ]) and is substituted in the heat-imbalance model

so to eliminate an extra unknown. We performed simple

experiments (measurements shown in Fig. 2) to obtain α, to

derive the relationship between T out and ∆T , and to validate

the resulting heat-imbalance model by comparing its output

(predicted increase in the CPU temperature ∆T at a server)

with actual observation (shown in Fig. 3).

We started from an initial idle condition, with 0% CPU

utilization and a corresponding zero heat imbalance, and

increased the CPU utilization from 0% to 25%, 50%, 75%,

and 100% progressively as shown in Fig. 2. The CPU was

subject to each of the aforementioned load levels for around

60 minutes so to allow the CPU temperature to reach steady

state. To increase the CPU utilization we used Lookbusy (a

synthetic load generator for Linux systems), which keep the

CPU(s) at the chosen utilization level by adjusting its own load

up or down to compensate for other loads on the system. We

measured the corresponding increase in power consumption

(Fig. 2(a)) as well as CPU and server outlet temperatures

(Fig. 2(b)), and also calculated the variation in heat imbalance

over time (Fig. 2(c)). Obtaining the value of α using (3) is

now straightforward as the heat imbalance, heat extraction,



0 30 60

25

30

35

40

T
e
m

p
e
ra

tu
re

 [°
C

]

0 30 60

25

30

35

40

0 30 60

25

30

35

40

0 30 60

25

30

35

40

Real CPU Temperature

Estimated CPU Temperatrue

Time [m]

Fig. 3. CPU temperature – measured and estimated (using the heat-imbalance
model) – when a representative CPU-intensive workload is run at different
CPU utilization levels.

and power consumption are known. On the contrary, deriving

the relationship between T out and ∆T is non-trivial.

First, we use logarithmic regression equations to model the

relationship between CPU utilization (un%) and the increase

in CPU temperature (∆Tn
◦C, shown in Fig. 2(d)), i.e.,

∆Tn = α ln(un) + β. Then, based on this knowledge and

our observation from Fig. 2(c), we derive a simple linear

regression model that represents the relationship between ∆Tn

and T out
n (for a fixed server inlet temperature and airflow rate)

for use in our heat-imbalance model. We verify the accuracy

of the logarithmic regression equations with the empirically

determined coefficients (α and β) as well as the linear regres-

sion model by repeating the aforementioned experiment again

and comparing the predicted CPU temperatures over time with

the actual CPU operating temperature as shown in Fig. 3.

Prediction of future CPU operating temperatures using our

heat-imbalance model is sensitive to the variable heat and air

circulation patterns (thermodynamic phenomena) at different

regions inside a datacenter.

IV. THERMAL-AWARE VM CONSOLIDATION

For a given set of VMs, minimizing the number of servers

that are in operation (consolidation) will help reduce the

energy overhead and, hence, the total energy consumption. In

addition to saving the energy spent on computation, thermal-

aware VM consolidation also helps achieve a higher COP of

cooling. In this section, we first formulate the VM allocation

problem as an optimization problem, which employs our heat-

imbalance model. As this optimization is NP-hard, we then

present our heuristic solution, VMAP (thermal-aware proactive

VM mapping solution). The motivation for formulating the

optimization problem is to gain insight and make key design

decisions for our heuristic solution.

Optimization Problem: The total energy consumption in a

datacenter can be split into energy consumption for computing

(Ecomp [kWh]), i.e., for running the workloads (or VMs) on

servers, and energy consumption for cooling (Ecool [kWh]).
We assume that the cooling system parameters (fan speed

and compressor duty cycle of the CRAC) are fixed, i.e., the

energy spent on cooling is fixed (Ecool = const) for the

duration δ. Note that Ecool can be optimized independently

at a periodicity ∆ ≫ δ. The goal is to find an optimal

mapping of VMs to physical servers (represented by the

binary associativity matrix A) so to minimize Ecomp while

simultaneously increasing COP of cooling. The known (given

as well as measured) parameters and optimization variables of

the optimization problem can be summarized as,

Given (offline) : N , T reco, δ,Mn, Cp;

Given (online) : M,Γm ∀m ∈ M;

Measured (online) : T t0
n ,min

n , T in
n ,Λn ∀n ∈ N ;

Find : A = {amn}, m ∈ M, n ∈ N . (4)

Here, T t0
n and Λn = {λs

n} represent the current CPU temper-

ature and the maximum residual capacity of each subsystem

s at server n, respectively. The objective of the optimization

problem is,

Minimize : Ecomp =
∑

n∈N

Ecomp
n , (5)

Ecomp
n =

∑

s∈S

(

P s,on
n · ts,onn + P s,idle

n · ts,idlen

)

· αs
n; (6)

Subject to : C1, C2, C3.

The first constraint (C1) ensures that a VM is allocated to

one and only one server, i.e.,

C1:
∑

n∈N

amn = 1, ∀m ∈ M. (7)

The second constraint (C2) ensures that the resource require-

ments of all VMs allocated to one server do not exceed the

maximum capacity of a server subsystem and is given by,

C2:
∑

m∈M

amn · γs
m ≤ λs

n, ∀n ∈ N , ∀s ∈ S. (8)

The third constraint (C3) ensures that the predicted CPU

temperature – sum of the current CPU temperature T t0
n and

the predicted temperature increase ∆Tn
[t0,t0+δ] calculated using

(3) – is always below the recommended maximum operating

temperature (T reco) and is represented as,

C3: T t0
n +∆Tn

[t0,t0+δ] ≤ T reco, ∀n ∈ N . (9)

The optimization problem presented here naturally forces

VM consolidation. As heat generation increases logarithmi-

cally with increase in CPU utilization (shown in Fig. 4), the

optimization problem prefers already loaded active servers

for VM allocation when all the constraints (C1, C2, and

C3) are met. This is because the additional cost of placing

a VM in an already loaded server (in terms of increase in

temperature) decreases as the load increases. Also, constraint

C3 ensures that more VMs are allocated to servers in better-

cooled areas of the datacenter. Such thermal-aware VM con-

solidation leads to better utilization of computing resources.

In addition, consolidation increases the return air temperature

in the consolidated server aisles thus increasing the efficiency

of cooling. This can be attributed to the fact that higher the

CRAC return air temperature the higher the COP of cooling.

VMAP - Thermal-aware Proactive VM Consolidation:

We characterize the aforementioned optimization problem as

a variable-size multi-dimensional bin-packing problem [10],
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[11]. This is a generalized version of the traditional fixed-size

one-dimensional bin-packing problem as the bins (servers)

and objects (VMs) are represented as “hypercuboids” with

multiple dimensions d (5 in our problem) and all the bins

need not have the same capacity along each dimension. The

size of each VM along the five different dimensions are

its four normalized subsystem utilization requirements and

the heat-generation rate. The size of a server along the five

different dimensions are the normalized residual capacity (or

availability) of each of the four subsystems and the heat

extraction rate. The first four dimensions corresponding to

VM subsystem requirements (in the object definition) and

server subsystem residual capacities (in the bin definition)

are straightforward to interpret and incorporated into a bin-

packing problem. However, the relationship between the heat-

generation (in the object definition) and heat-extraction (in

the bin definition) rates is more involved. The bin capacity

along the fifth dimension is actually the difference between

current CPU temperature (T t0) and the upper bound of the

recommended temperature range T reco.

We use a multi-dimensional best-fit-like algorithm [12] to

allocate a set of VMs (M) that have arrived in a time window

to a set of physical servers (N ). First, the VMs are sorted in

decreasing order of their deadlines (or running time). Note

that this is a shift from the traditional method of sorting

based on one of the dimensions. This is because, in HPC

clouds, the subsystem requirements of VMs are comparable

and, hence, their durations play a pivotal role in determining

energy consumption. It is desirable to pack longer duration

VMs together so that server that host smaller duration VMs

can be switched off at the completion of workload tasks so

to save energy. Once the VMs are sorted according to their

deadline, each VM m ∈ M is allocated a server n ∈ N
whose residual volume (of the hypercuboid) is the lowest

of all servers’ after assignment. The time complexity of the

aforementioned heuristic is O(|M| · log |M|+ d · |M| · |N |),
where the first and second components correspond to the

sorting step and the assignment steps, respectively.

The objective of bin packing (minimize the number of bins

used) is in line with the objective of the optimization problem,

i.e., the fewer the active physical servers, the lower the energy

consumption. This is also made possible due to the logarithmic

behavior (as shown in Fig. 4) of CPU temperature as well as

energy consumption with respect to CPU utilization in multi-

core multi-threaded systems (which are the most common

computing equipment configuration in cloud datacenters). In

addition, bin-packing heuristics require that the objects are

not further manipulated (i.e., divided or rotated) and do not

overlap inside the bins (similar to constraint C1), the total

volume of all the object inside a bin cannot exceed the bin’s

volume (similar to constraints C2 and C3).

VMAP has the ability to optimize resource allocation

across a network of heterogeneous yet federated datacenters.

Heterogeneity here refers to the difference in characteristics

and capabilities of computing (e.g., heat-generation rate of

servers, processing power, network capacity, etc.) and cooling

(e.g., COP of air-chilled vs. water-chilled cooling) equipment,

sources of energy for operation and cooling (e.g., renewable or

non-renewable), and environmental regulations in the respec-

tive geographical region (e.g., cap on CO2 footprint or cap on

water temperature increase caused by cooling systems). We

follow a two-step approach in which the problem of deciding

which datacenter should handle the VM and which physical

server should host the VM are determined sequentially. For

example, if reducing the CO2 footprint and the aggregate TCO

are the goals, the solution will load datacenters that rely on re-

newable sources of energy as long as the following conditions

are met: high COP of cooling, compliance with requirements

of VMs/workloads and with environmental regulations such

as cap on water consumption and cap on water temperature

increase caused by the cooling system. As mentioned earlier,

we have a testbed of geographically separated yet federated

datacenters to validate our solutions.

V. PERFORMANCE EVALUATION

We evaluated the performance of VMAP via experiments

on a small-scale testbed and via trace-driven simulations.

The system model used in our simulations has the same

characteristics of our real testbed. First, we provide details

on our testbed and experiment methodology (workload traces,

performance metrics, and competing approaches). Then, we

elaborate on the experiment and simulation scenarios aimed at

highlighting the benefits of thermal-aware VM consolidation.

A. Testbed and Experiment Methodology

Testbed: We have fully equipped machine rooms at two

sites of NSF CAC – Rutgers University (RU) and University

of Florida (UFL) – with state-of-the-art computing equipment

(modern blade servers in enclosures) and fully controllable

CRAC systems. The blade servers at both sites are equipped

with a host of internal sensors that provide information about

server subsystem operating temperatures and utilization. In

addition, the machine room at RU is instrumented with an

external heterogeneous sensing infrastructure [5] to capture

the complex thermodynamic phenomena of heat generation

and extraction at various regions inside the machine room.

The sensing infrastructure comprises of scalar temperature

and humidity sensors placed at the server inlet (cold aisle)



and outlet (hot aisle), airflow meters at the server outlet, and

thermal cameras in the hot aisle.

The computing equipment configuration at RU is two Dell

M1000E modular blade enclosures. Each enclosure is maxi-

mally configured with sixteen blades, each blade having two

Intel Xeon E5504 Nehalem family quad-core processors at 2.0

GHz, forming an eight core node. Each blade has 6 GB RAM

and 80 GB of local disk storage. The cluster system consists of

32 nodes, 256 cores, 80 GB memory and 2.5 TB disk capacity.

The cooling equipment at RU is a fully controllable Liebert

22-Ton Upflow CRAC system. The computing equipment

configuration at UFL is two IBM Blade Center with sixteen

blades in each, each blade having two Intel Xeon E5504

Nehalem family quad-core processors at 2.0 GHz, forming

an eight core node. Each blade has 24 GB RAM and 80 GB

of local disk storage. The cluster system consists of 32 nodes,

256 cores, 768 GB memory and 2.5 TB disk capacity. The

cooling equipment at UFL consists of two fully controllable

Liebert 14- and 9-Ton CRAC system (Model FH302C-CA00

and FH147C-CAEI) with humidifier and reheating capacity.

Workloads: We used real HPC production workload traces

from the RIKEN Integrated Cluster of Clusters (RICC) [13].

The trace included data from a massively parallel cluster,

which has 1024 nodes each with 12 GB of memory and two

4-core CPUs. As the RICC is a large-scale distributed system

composed of a large number of nodes, we scaled and adapted

the job requests to the characteristics of our system model.

First, we converted the input traces to the Standard Workload

Format (SWF) [14]. Then, we eliminated failed and canceled

jobs as well as anomalies. As the traces did not provide all the

information needed for our analysis, we needed to complete

them using a model based on [15].

The entire trace consists of 400,000 requests spread over 6

months. We extracted three versions out of this long trace, one

for use in the small-scale experiments (with tens of servers)

and two for use in medium-scale (hundreds of servers) simu-

lations. The trace used in our experiments have 100 requests

over the course of one day. The two other traces used in our

simulations, however, have 5,200 requests spread over 2 days

and 10,000 requests spread over 3 days. We assigned one of

four benchmark profiles (based on Sysbench for CPU-intensive

and TauBench for CPU-plus-memory-intensive workloads) to

each request in the input trace, following a uniform distribution

by bursts. The bursts of job requests were sized (randomly)

from 1 to 5 requests.

Competing Strategies: We compared the performance of

VMAP against six strategies, namely, Round Robin (RR),

First-Fit-Decreasing (FFD), Best-Fit-Decreasing (BFD), First-

Fit-Decreasing Reactive (FFD R), Best-Fit-Decreasing Reac-

tive (BFD R), and Cool-Job (CJ) [4] allocation. Of these

six strategies, RR, FFD, and BFD are thermal-unaware while

FFD R, BFD R, and CJ make reactive allocation decisions

based on current temperature measurements.

• In RR, the VMs are allocated sequentially to servers.

• In FFD, the VMs corresponding to the requests that have

arrived in the previous time window (of duration δ [s])

are first sorted in the decreasing order of volumes of the

hypercuboids representing the VMs. Then, each VM is

allocated to the first server (w.r.t. server ID) that satisfies

all the four subsystem utilization requirements.

• In BFD, the VMs are again sorted according to volume as

in FFD. Then, each VM is allocated to the first physical

server (w.r.t. server ID), which not only satisfies all the

four subsystem utilization requirements but also has the

least residual volume after packing that VM.

• In FFD R, VMs are first placed following the FFD policy.

Then, VMs in overheated servers are relocated to cooler

servers again based on the FFD principle.

• In BFD R, VMs are first placed following the BFD

policy. Then, VMs in overheated servers are relocated

to cooler servers again based on the BFD principle.

• In CJ, each VM (that has arrived in the previous δ [s])
is allocated to the first “coolest” physical server, which

satisfies all the four subsystem utilization requirements.

Similar to FFD and BFD, the VMs are sorted in the

decreasing order of their normalized volume. Note that

CJ does not predict future temperatures like VMAP does.

Metrics: We evaluate the impact of our approach in terms

of the following metrics: energy consumption (in kilo- Watt-

hour [kWh]), and thermal violation (duration in second per

day[s/day]). The thermal violation was calculated by monitor-

ing the average time the servers were operating in the unsafe

temperature region in a day (24 hours). Unsafe temperature

region here refers to temperatures greater than the upper bound

of the recommended range specified by equipment manufactur-

ers. A higher percentage of thermal violation results in greater

risk of equipment failure and/or drop in performance.

B. Energy savings

Non-consolidation vs consolidation: We performed trace-

driven simulations to quantify the energy savings achieved by

VMAP in a large-scale setting (180 servers and 10,000 VM

requests spread over 3 days). Figure 5(a) shows VMAP’s en-

ergy savings in comparison to each competing algorithm. RR

and CJ are the least energy efficient in comparison to VMAP

as they spread the workload (VMs) over the entire datacenter

(to balance the load in the case of RR and in search for the

coolest server in the case of CJ). The other four schemes

consolidate VMs like VMAP does, however, they consume

more energy than VMAP. In Fig. 5(b), we analyzed different

components (and their percentage of the total) of VMAP’s

energy savings. The main reasons for VMAP’s superior energy

performance are savings due to 1) increased server utilization,

2) efficient cooling because of the higher COP, and 3) turning

off idle servers. Even though the actual amount of energy

savings ranges from 17 (in comparison to BFD) to 148kWh (in

comparison to CJ), the ratio of the three components of savings

does not fluctuate significantly. It can be clearly observed that

increased server utilization is the largest contributor to energy

efficiency followed by shutdown of idle servers.

Non-thermal-aware vs thermal-aware: Figure 6 shows

thermal violation of the same simulation performed above.
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Thermal-aware algorithms (FFD R, BFD R, CJ, VMAP) ex-

hibit a smaller degree of violation in comparison with non-

thermal-aware algorithms (FFD, BFD). FFD R and BFD R

perform better in comparison to FFD and BFD because VMs

from overheated servers are reallocated in reaction to thermal

violation alarms. However, due to the reactive nature of

these techniques, undesired equipment overheating is still an

issue. VMAP and CJ avoid thermal violations. However, CJ’s

performance in terms of this metric is similar to VMAP’s, it

comes at a very high energy cost as shown in Fig. 5(a).

C. Consolidation in “better-cooled” areas

We performed trace-driven simulations to show how VMAP

can exploit unevenness in heat imbalance inside a datacenter

(with homogeneous computing equipment) caused by uneven-

ness heat-extraction rates due to difference in server inlet

temperatures. Evaluation was carried out in a small-scale
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setting (180 servers and 5,200 VM requests spread over 2

days). We studied the performance of the four thermal-aware

techniques (FFD R, BFD R, CJ, and VMAP) under different

degrees of Gaussian variation in the server inlet temperature;

N (25, 1)◦C, N (25, 52)◦C, and N (25, 92)◦C. Unevenness

of inlet temperature of each server can be attributed to the

non-ideal air circulation, which depends on the layout of

server racks inside the datacenter and on the placement of

CRAC unit fans and air vents. Figure 7 shows that the total

energy consumption (for computation as well as cooling) of

VMAP decreases as the degree of unevenness increases. This

is because VMAP consolidates VMs in better-cooled areas

where a higher heat-extraction rate leads to a lower increase

in CPU temperature (with the same heat-generation rate).

D. Performance Under High COP

We performed trace-driven simulations to study VMAP’s

performance under varying COP. First, based on the system

model of the infrastructure at RU and UFL, we carried out

evaluations in a large-scale setting (180 servers and 10,000

VM requests spread over 3 days at each site). The CRAC outlet

temperature in the UFL system model was set to a higher value

(30 ◦C) compared to the 25 ◦C in RU system model. It can be

seen in Fig. 8 that the energy consumption for cooling at UFL

is lower than the one at RU because the COP of the CRAC

system model at UFL is higher than the one at RU. COP of a

CRAC unit increases with increase in the outlet temperature

[4] as the work that needs to be done to reduce the hot-air

temperature to 30 ◦C is lower than the work that needs to be

done to reduce it to 25 ◦C. We then studied the performance

of VMAP and the other thermal-aware techniques using one

system model (RU’s) with different CRAC COPs. In Fig. 9,

we also show that VMAP does not incur thermal violation

while others do even for the servers in higher temperature.
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E. Impact of Decision Window (δ)

We studied the impact of the periodicity (δ) on the perfor-

mance of VMAP. Evaluation was carried out in a large-scale

setting (180 servers and 10,000 VM requests spread over 3

days). If δ is big, the complexity increases because the number

of VM requests (|M|) increases. If δ is small, the complexity

decreases because |M| decreases, but it is less efficient as only

fewer VM requests can be optimized. Generally, VMAP can

do better packing and save energy when δ is big but δ cannot

exceed certain time bound because the extra delay incurred

may violate SLA. Figure 10 shows high energy consumption

for small δ but lower energy consumption for large δ. VMAP

outperforms the other thermal-aware strategies for any δ. The

best choice of δ is, however, dependent on the workload

pattern and its statistics.

VI. RELATED WORK

Prior research efforts on thermal management of datacenters

[16] have focused exclusively on only one of the two fun-

damental approaches: management of heat extraction [17] or

management of heat generation inside a datacenter [18], [19].

The first approach aims at improving cooling system efficiency

by effectively distributing cold air inside the datacenter (cool-

ing system optimization), while the second approach focuses

on how to balance or migrate workloads in such a way as

to avoid overheating of computing equipment. In contrast,

we focus on a joint approach so to minimize the risk of

overheating of servers while simultaneously maximizing the

cooling efficiency.

In [20], the authors profile and benchmark the energy usage

of 22 datacenters. They perform energy benchmarking using

a metric that compares energy used for IT equipment to the

energy used for the CRAC system and conclude that the key to

energy efficiency is air circulation management (for effective

and efficient cooling). As many datacenters employ raised

floors with perforated tiles to distribute the chilled air to racks,

researchers have tried to gain valuable insights into efficient

airflow distribution strategies in such datacenter layouts [17].

Other research efforts were aimed at improving the efficiency

of cooling systems through thermal profiling (knowledge of

air and heat circulation) of datacenters. Basic mathematical

modeling and parameters for profiling datacenter are proposed

in [21]. However, capturing complex thermodynamic phe-

nomena using complex Computational Fluid Dynamic (CFD)

models [22] is prohibitive in terms of computational overhead.

Measurements from scalar sensors alone [23] cannot capture

the complex thermodynamic phenomena inside a datacenter.

Hence, we used a heterogeneous sensing infrastructure [5] –

composed of temperature and humidity scalar sensors, thermal

cameras, and air flow meters – to thermally profile datacenters

in space and time so to exploit that information for resource

provisioning and cooling system optimization.

Several solutions that employ temperature-aware job distri-

bution and migration have been proposed for alleviating unde-

sired thermal behavior (higher operating temperatures) inside

datacenters. Moore et al. [18] proposed thermal management

solutions that focus on scheduling workloads considering tem-

perature measurements. They designed a machine-learning-

based method to infer a model of thermal behavior of the

datacenter online and to reconfigure automatically the thermal

load management systems for improving cooling efficiency

and energy consumption. Bash and Forman [24] developed

a policy to place the workload in areas of a datacenter that

are easier to cool, which results in cooling power savings.

They used scalar temperature sensor measurements alone to

derive two metrics that help decide whether to place workload

on a server or not: the first metric, Thermal Correlation

Index (TCI), gives the efficiency with which any given CRAC

can provide cooling resources to any given server; while the

second is Local Workload Placement Index (LWPI). Tang et al.

[19] investigated the mechanism to distribute incoming tasks

among the servers in order to maximize cooling efficiency

while still operating within safe temperature regions. They

developed a linear, low-complexity process model to predict

the equipment inlet temperatures in a datacenter given a

server utilization vector; they mathematically formalize the

problem of minimizing the datacenter cooling cost as the

problem of minimizing the maximal (peak) inlet temperature

through task assignment. However, the work was validated

only through simulations. In [25], the authors explore a spatio-

temporal thermal-aware job scheduling as an extension to

spatial thermal-aware solutions like [18], [19], [26].

Heath et al. [26] propose emulation tools (‘Mercury’ and

‘Freon’) for investigating the thermal implications of power

management. In [27], the authors present ‘C-Oracle’, a soft-

ware infrastructure that dynamically predicts the temperature

and performance impact of different thermal management

reactions (such as load redistribution and dynamic voltage

and frequency scaling) into the future, allowing the thermal

management policy to select the best reaction. However,

neither of the aforementioned thermal-aware workload place-

ment solutions explicitly take into account the direct impact

of workload distribution on cooling system efficiency and

vice-versa. Thermal-aware management of datacenters should



strive to minimize the TCO of datacenters, i.e., to minimize

the cost of running servers through energy-aware workload

distribution as well as to minimize the energy spent on cooling,

by thoroughly understanding the effect of one on the other.

That is why we combined thermodynamic models and real-

time measurements (from temperature and humidity scalar

sensors as well as air flow meters) to capture the complex

thermodynamic phenomena of heat generation (due to specific

workload distribution) and heat extraction (due to cooling

system parameters and characteristics), in order to predict the

future temperature map of the datacenter for enabling proactive

thermal-aware datacenter management decisions.

VII. CONCLUSIONS AND FUTURE WORK

We first introduced and validated the novel concept of

heat imbalance, which captures the unevenness in heat gen-

eration and extraction, at different regions inside a HPC

cloud datacenter. We then proposed thermal-aware (knowledge

of heat imbalance) proactive Virtual Machine (VM) map-

ping (consolidation) solution, VMAP. Our solution maximizes

computing resource utilization, minimizes datacenter energy

consumption for computing, and improves the efficiency of

heat extraction, while not violating recommended maximum

operating temperature. We verified the effectiveness of VMAP

through experimental evaluations with HPC workload traces at

Rutgers University and University of Florida machine rooms.

We observed that the VMAP is 9%, and 35% more energy

efficient than best-fit and “cool job”, respectively, two state-

of-the-art reactive thermal-aware solutions. Currently, we are

investigating the joint optimization of duty cycle for the

VMAP allocation (δ) and cooling (∆). As the heat generation

is mainly due to the running workload (related to δ) and

heat extraction is mainly due to the cooling (related to ∆),

both δ and ∆ should be jointly considered to reduce energy

consumption.
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