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ABSTRACT

Stress is one of the key factors that impacts the quality of
our daily life. It is known that stress can propagate from one
individual to others working in close proximity or towards a
common goal, e.g., in a military operation or workforce, thus
affecting productivity, efficiency, and the ability to make ra-
tional decisions. Real-time assessment of the stress of in-
dividuals alone is, however, not sufficient as understanding
its source and direction in which it propagates in a group is
equally if not more important. In this paper, the direction of
propagation and magnitude of influence of stress in a group
of individuals are studied by applying real-time, in-situ anal-
ysis of Granger Causality. G-causality has established itself
as one of the promising non-invasive approaches in opera-
tional neuroscience to reveal the direction of influence be-
tween brain areas by analyzing temporal precedence. Ex-
tending G-causality analysis on real-time group data faces,
however, communication and computation challenges, to ad-
dress which a distributed mobile computational framework
is employed and workflows defining how data and tasks are
divided among the entities of the framework are designed.

1. INTRODUCTION

Motivation: Stress is one of the key factors affecting physi-
cal and mental wellbeing, which are essential in any environ-
ment where high level of performance is required and sought.
Research has shown that doctors and army personnel expe-
rience high level of stress as tolerance for errors in their pro-
fession is very low. High stress can significantly impair the
ability to perform tasks and make rational decisions, which
may impact a patient’s life in case of doctors and national
security in case of army personnel [12]. In [16], physicians
have reported that medical errors in which they had been
involved increased their anxiety about the potential for fu-
ture errors and negatively affected their confidence in their
abilities as physicians. It is well documented that high level
of stress experienced by doctors can lead to physical, psy-
chological, and emotional harm, in particular, burnout [3].
Stress can also propagate from one individual to others work-

ing in close proximity or towards a common goal, e.g., in a
military operation or workforce. The members in the team
can be affected by anziogenic behavior, i.e., a behavior that
induces anxiety and stress, of any/few members of the team.
We term the stress experienced by individuals in a group as
group stress.

Vision: Stress detection can provide us information of the
state of mind of an individual and can help enhance his/her
current productivity. Two physiological signals are required
for real-time stress detection, namely, Galvanic Skin Re-
sponse (GSR) and Heart Rate (HR), as both provide ac-
curate and precise information on the physiological situa-
tions of the individuals [5]. The rapid growth of non-invasive
sensing and low-power wireless communication technologies
has enabled continuous physiological signal acquisition using
compact wearable biomedical sensor nodes. However, quan-
tifying stress of an individual is not sufficient as the ultimate
goal is to understand the source of stress in a group and
the direction in which it propagates to the members. The
real-time group-stress detection allows us to make decisions
based on the mental state of individuals for a latency-critical
application. As an example, consider that a team has to be
formed for a strategic military mission; in this case, real-time
group-stress detection can give us insights into the current
state of mind of different army men. The army men who
can perform tasks without being overwhelmed by those at
higher ranks, or by anxiogenic behavior of other team mem-
bers, should be selected. This will empower army personnel
who are in better condition (less stressed) by putting them
in charge of the situation; also, it will help improve produc-
tivity and reorganize hierarchy beyond existing ranks and
roles. Hence, our interest is in understanding the real-time
direction and magnitude (i.e., extent) of influence of stress
from one person to another in the same group.

Tool to study propagation of stress: In neuroscience,
Granger Causality (or G-causality) has established itself as
one of the promising non-invasive approaches to reveal the
direction of influence between brain areas by analyzing tem-
poral precedence: if a signal change in area A consistently
precedes a signal change in area B, then A is said to Granger-
cause B [9]. G-causality has been successfully used in many
domains, e.g., for characterizing causal connectivity patterns
across different conscious levels (e.g., sleep anesthesia, nor-
mal wakefulness) [2]. While G-causality has been used in
literature to analyze causal temporal precedence between
signals of an individual, in this work we extend such ap-



proach and advocate the use of this tool to study causality
between physiological signals from two different individu-
als. We focus on detection of stress of individuals in a team
and establish the magnitude of influence of stress and its
direction of propagation in a group by applying real-time,
in-situ G-causality analysis. Note that G-causality provides
a much stringent condition on causation than just observ-
ing high correlation with some lag-lead relationship. In our
paper, we measure both correlation and causality in group-
stress data, study their relationship in different scenarios for
different time lags, and establish where correlation between
stress data of different individuals is significantly higher than
causality and viceversa.

Challenges: Real-time G-causality analysis of group-stress

data faces communication and computation challenges. Firstly,

large amount of data has to be moved among the sensor
nodes, which are attached to members of the group (commu-
nication bottleneck). Secondly, group G-causality analysis
requires solving multiple linear regression problems (com-
putation bottleneck); the computation complexity of such
pairwise analysis increases quadratically with the number
of people in the group. To address these challenges, we
propose to execute G-causality workflows in a distributed
manner. We refer to our earlier work on distributed mobile
computing grid [15] to enable distributed G-causality. The
distributed grid is divided into two major entities, namely,
1) middleware, which solves the communication bottleneck
by moving the data within the network efficiently, and 2)
framework, which takes care of the high computation aspect
of the problem by assigning computation tasks “optimally”
to the different entities of the distributed grid (computation
nodes). In this work, we also present workflows, which de-
fine the tasks as well as their input/output relationship, that
can be executed by the different entities of the distributed
framework to overcome the above challenges.

There are a few challenges to overcome in order to enable
G-causality. Firstly, G-causality requires the data to be co-
variance stationary [11], which is a requirement that is not
always possible to meet. Significant individual-specific pre-
processing steps need to be applied in order to make the
data stationary (e.g., testing subsets of data to determine
the length over which the data is stationary). In order to
estimate G-causality, it is required to determine the time
lag between the two signals under investigation; a minimum
and maximum time lag should be specified, and within such
range an optimal lag should be determined on the fly. The
complexity of this computational task increases as the mea-
sure of this range, i.e., the difference between the max and
min lag, increases. Figure 1 envisions two scenarios, a civil-
ian (left) and a military (right), where sensors on the body of
medical personnel and soldiers, respectively, are used to con-
tinuously collect various vital signs and nearby rugged com-
puting devices organized by our mobile computing frame-
work are used for compute-intensive group-stress analysis.

Our Contribution: The major contributions of this pa-
per include: 1) enabling compute-intensive group Granger-
causality analysis of stress using our mobile-grid framework;
2) studying the direction of propagation and magnitude of
stress from one member of the group to the other(s); 3) de-
signing workflows on how data and tasks are divided among

Wireless grid of Service providers (under-
utilized devices in the vicinity) running
compute-intensive group stress models.
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Figure 1: Role-based resource provisioning frame-
work for real-time tracking of stress propagation.

the different entities of the framework. The rest of the paper
is organized as follows: in Sect. 2, we present our proposed
solution to enable distributed G-causality; in Sect. 3, we
describe our experimental methodology and results; finally,
in Sect. 4, we present our conclusions and plans for future
work.

2. PROPOSED SOLUTION

Our group-stress analysis aims at analyzing in real time di-
rection of propagation and magnitude of stress between dif-
ferent members of a group. Such a real-time analysis poses,
however, several communication (data exchange among sen-
sors) and computation challenges (multiple linear regression
problem). To overcome these challenges, we propose solving
G-causality in a distributed way via our mobile computing
framework. In this section, we briefly give an overview of
the theory of G-causality; then, we discuss the workflow (se-
quence of tasks) for the distributed execution of G-causality.
We also introduce the entities of our distributed framework
and explain how such entities collaborate to perform differ-
ent tasks of the workflow.

Distributed Granger Causality: A time series x = {z1,
Z2,...,Tt,...} is said to Granger-cause another time series
y if including information about the past of x significantly
increases the prediction accuracy of the current value y; of y
in comparison to predicting it based only on the past values
of y alone. Granger Causality was initially introduced in [6],
where the authors implemented it using two vector Auto-
Regressive (AR) models; the first, called restricted model,
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calculates how much two time series, x and y, can be ‘ex-
plained’ by their own past (z:-; and y;-;, with j =1,2,...),
resulting in residual error variances A; = var(d1¢) and I'1 =
var(y1¢) (the model order is represented by P, which speci-
fies how many previous time points are taken into account,
and the length of the time series by T', with P < T)).
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Figure 2: (a) Workflow designed to determine stress of an individual from his/her vital signs; (b) Workflow
designed to execute G-causality in our distributed computing framework (note that the output of the stress
workflow serves as input to the G-causality workflow); Experimental setup to measure (c) skin response using
Galvanic Skin Response (GSR) sensors and (d) heart rate using Electrocardiogram (ECG) sensors.

In the second, called unrestricted model,
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the prediction is based on the time series’ own past and the
past of the other time series. This results in residual error
variances Ay = wvar(dz¢) and I's = var(ya:). The linear
influence from x to y, Fx—y, and from y to x, Fy_x, can
now be calculated as the ratio between the variances of the
residual error, i.e.,
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A reduction in error variance when including the past of

another time series results in a larger F-ratio. The difference

G-causality, i.e., Fx—y — Fy—x, was calculated to assess the

dominant direction of information flow.

Selection of Time Lag: Selecting the time lag is an impor-
tant problem in G-Causality. The estimation of AR models
requires as a parameter the number of time-lags P to in-
clude, i.e., the model order. Too few lags can lead to a poor
representation of the data, whereas too many of them can
lead to problems in the model estimation [11]. Two criteria
have been introduced in the literature, namely the Akaike
Information Criterion (AIC) [1] and the Bayesian Informa-
tion Criterion (BIC) [10] to estimate the model order. For
n variables we have,

2Pn?

AIC(P) = In(|Sa|) + T” ,
(4)
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BIC(P) = In(|Z2|) + %
where X5 is the noise covariance matrix of the unrestricted
model and | - | indicates the determinant of a matrix. AIC

is calculated for a set of model orders and the order which

gives the minimum value of AIC is selected as the model
order of the AR model to determine G-causality between
two time series.

Designing Workflow for G-causality: To enable the dis-
tributed G-causality, we design a workflow that indicates
the different tasks that have to be executed in parallel and
the sequential steps that have to be taken to determine G-
causality. A workflow is composed of multiple stages with a
set of tasks K' = {k}},j = 1,...,|K’|, to be performed at
each stage 7. Let M be the total number of stages, i.e.,
t =0,...,M — 1. Figure 2(a) depicts the workflow for
stress detection and stress-level rating [13, 4], which uses
vital-sign data acquired from biomedical as well as kine-
matic sensors. Stage 1 of this workflow is purely composed
of data-analysis tasks, whereas Stages 2 and 3 are composed
of data-manipulation or decision-making tasks. In Stage 1,
Heart Rate (HR) and GSR are each given a score [0,1] (0
corresponds to low, 1 to high) based on simple manipula-
tions of the corresponding sensor outputs. The assignment
of these normalized scores requires domain knowledge and
is in some cases subject specific (as in GSR and HR). In the
second stage, we determine the mean, standard deviation,
and minimum and maximum value of GSR and HR from
the data. In the last stage, we use our Euclidian distance
algorithm (explained later) to determine the overall stress.

Figure 2(b) shows the workflow diagram to compute G-
causality. The G-causality workflow takes as input the out-
put of the stress workflow model, which is the stress experi-
enced by each member of the team measured over a period
of time. In the first stage of the G-causality workflow, each
sensor node performs pre-processing steps and checks the
stationarity of the stress data [6]. In the case the data is not
stationary, the sensor nodes determine the time window over
which the data is stationary. In the second stage, each sen-
sor node solves multiple linear regression problems, which
determine the model order. Each node also receives data
from all the other sensor nodes in the group and calculates
the model order from each pair of nodes. As the last stage,



each node determines the G-causality for each pair of group
members.

Note that the computation complexity to determine the stress
for a team increases linearly with the number of team mem-
bers. On the other hand, the computation complexity to de-
termine the magnitude of G-causality for a team increases
quadratically with the number of team members. This is
because we estimate G-causality pair-wise, i.e, we calcu-
late G-causality between every two members of the team.
To determine G-causality between any pair of team mem-
bers, the compute intensive task is the estimation of time
lag, which requires solving a linear regression problem. The
dominant operation in a linear regression problem is matrix
inversion, which requires N® + N2 4+ N floating point opera-
tions (flops), where N is the length of the stress data of an
individual.

Distributed Computing Framework: To solve the chal-
lenges faced by a real-time implementation of G-causality,
we propose to compute G-causality using our distributed
computing framework [15]. The entities of the distributed
computing grid may at any time play one or more of the fol-
lowing three logical roles: i) service requester, which places
requests for workloads that require additional data and/or
computing resources from other devices, ii) service provider,
which can be a data provider, resource provider, or both, and
iii) a broker (usually, the base station), which processes the
requests from the requesters, determines the set of service
providers that will provide or process data, and distributes
the workload tasks among them. The service requester of-
floads (shares) the task of executing compute-intensive al-
gorithms to (with) the service providers by submitting ser-
vice requests to one of the brokers. Resource providers lend
their computational (CPU cycles), storage (volatile and non-
volatile memory), and communication (i.e., network inter-
face capacity) resources for processing data. The broker is
aided by an energy-aware resource allocation engine that
distributes the workload tasks optimally among the service
providers. Our framework applies to applications exhibiting
data parallelism as well as to applications exhibiting task
parallelism. The broker is made aware of the availability of
service providers through voluntary service advertisements
from the service providers.

Entities involved in our experimental setup: In our experi-
mental setup all the sensor nodes attached to group mem-
bers serve as data providers and service providers. All the
devices in the vicinity, i.e., that are one-hop distance away
from the sensor nodes, also serve as service provider. They
provide their computational power for group-stress analysis.
We assume that the nodes communicate with the devices
in the vicinity over a piconet. The nodes collect data for
a pre-defined interval of time and later broadcast the data
sequentially with a pre-defined guard band to the nearby de-
vices forming the distributed computing grid. The division
of tasks among devices is based on the workflow described
earlier. From our workflow (Fig. 2), we can see that Stage 0
is composed entirely of data-collection tasks, which can be
performed only at the data providers (sensor nodes). The
computation and final tasks (at any stage ¢ > 1), however,
can be performed at any service provider (sensors on body
or other nearby computing devices).

Cloud-assisted Stress Analysis: A Cloud is a trusted,
resource-rich cluster of computers that is well-connected to
the Internet. Clouds have higher computing power than that
available to an elastic pool of resources (services providers)
in the field. Hence, this gives us an opportunity for more
thorough analysis of the collected stress data. On the other
hand, local computing grid is used for time-critical group-
stress analyses, e.g., to select team members for a strate-
gic military operation. In this paper, we have focused on
two physiological signals; however, several other physiolog-
ical signals, e.g., skin temperature, breath, blood pressure
volume, and pupil dilation, have also been used in the lit-
erature for stress detection. Cloud computing gives us an
opportunity to use an ensemble of physiological signals and
stress models to obtain a better estimate of stress. In fact,
multiple physiological signals can help design human emo-
tions elicitation system and responses to them by using su-
pervised learning algorithms [8].

Also, Clouds can serve as a database by storing stress history
of multiple people over a period of time. Every time stress is
determined by a local distributed grid, it can be sent to the
Cloud. This way, the latest stress data of a person can be
compared with stored stress data so to monitor the evolution
of the stress of the person over time and over activities,
given a certain context. The Cloud can thus tabulate and
send to a group leader (supervisor of a group whose group
stress is being analyzed) the tasks in which a person is more
productive and the group of people with whom a person
works more productively. A ranking algorithm can be used
to process this information.

3. PERFORMANCE EVALUATION

We provide here details about our testbed and the exper-
iment methodology; then, we present experiment scenarios
and discuss the results. Specifically, we present how stress
can be quantified real time from physiological signals as well
as how it propagates from one group member to another (in
terms of magnitude and direction).

Experimental Setup: To measure GSR and HR, we have used
non-invasive GSR and ECG sensors; the former measures
the change in electro-dermal activity (increase in conduc-
tance) as sweat glands are stimulated for a hydrate solu-
tion, while the latter measures the heart rate of an indi-
vidual. Both sensors are part of our mobile framework via
Bluetooth connections and stream GSR and ECG measure-
ments. The data stream collected on-line feeds our frame-
work, and hence, our group-stress analysis application. Fig-
ure 2(c) and (d) show the placement of the sensors on the
body. The sampling rate of GSR and ECG sensors are set
to 51.2 Hz; we have employed wavelet transformation [7] to
calculate HR based on the peak-to-peak distance extracted
from the ECG measure. We give these measurements as an
input to the stress model in Fig. 2(a) to determine stress.

Quantification of Stress: Our model quantifies the level
of stress based on GSR and HR measurements. The level
of stress, which ranges in [0 — 1], is used as input parame-
ter for the G-causality calculation. In general, GSR and HR
show increase in value with increase in stress but, as different
group members react differently even for the same type and
degree of stress, it is hard to quantify the level of the stress
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Figure 3: (a) Raw GSR and HR measurements under four different phases (RX1 and RX2 indicate relaxed
phase, while STR1 and STR2 represent mental- and physical-stress phase, respectively); (b) Normalized
GSR-HR data; (c) Stress calculated via the stress model in Fig. 2(a), which uses GSR and HR as inputs.

across group members. Hence, we profile each individual
based on different level of stress phases and extract the fea-
tures from the measurement. Our profiling phase extracts
the statistical features of sensor values and normalizes them
to make the stress level comparable to that of other group
members. Specifically, we have considered the measurement
of HR and GSR as stochastic signals, and extracted the fea-
tures (i.e., mean p, standard deviation o, maximum maz,
and minimum min) of HR and GSR signal in different test
stress phases (e.g., relaxed and under-stressed phases).

Figure 3(a) plots raw GSR and HR signals during our experi-
ment and shows that the measurements depend on the stress
level induced by our experiments. The experiments are com-
posed of four phases: two relaxed phases (RX1 and RX2)
and two under-stress phases (STR1 and STR2). RX1 indi-
cates the relaxed phase before the experiment starts while
RX2 indicates the relaxed phase at the end; STRI1 indi-
cates a phase where a group member is under stimulating
task (hyperventilation) and STR2 indicates a phase where
a group member is under a physical exercise. From our
experiments, we have observed that physical stress signifi-
cantly changes HR rather than GSR, whereas mental stress
(anxiety reflected in hyperventilation) significantly changes
GSR rather than HR. Therefore, by collecting simultane-
ously HR and GSR signals, we can study both the mental
and physical stress experienced by an individual. To quan-
tify the propagation of mental stress, we focused on calcu-
lating stress from GSR signals. We denote as h)" and g,"
to indicate the raw HR and the GSR signals of a group
member r under stress phase m, where R is the number of
group members and M is the number of stress phase. Af-
ter acquiring the raw data from the sensors, we normalize
the collected measurement g;* and h;", V r = {1,2,..., R}
and m = {1,2,..., M}. First, we extract the minimum and
maximum value of g™ = min(g}, g2 ... gM ) and g% =
max(gl,g?...gM), and the same for K7™ and h™*” among
the different R phases. We normalize g, and h, as,

norm 9r — g;nzn norm __ h?" - h:mn

gr = T hr I —
g;naz _ g'rr‘nzn h')?zuzz _ h?”n

()

Figure 3(b) shows normalized [0-1] HR-GSR data in a 2D

plain. We calculate the Euclidian distance of each measure-
ment in the GSR-HR plain to compute the stress level and
normalize it to obtain the final stress level, which ranges in
[0-1] as shown in Fig. 3(c).

Distributed Computation of G-causality: We com-
pared the performance of centralized execution of G-causality
against its distributed computation using our mobile com-
puting framework. The metric for comparison is time taken
to execute G-causality for a team of people. We compared
the centralized execution (where data is given from all nodes
to a sink node for computation) (Schedule-1) with Round-
Robin (in which we distribute an equal number of tasks to
all nodes) (Schedule-2), and a schedule where we distribute
a different number of tasks to different nodes based on their
computation capability (Schedule-3). We present how the
time taken for executing group stress analysis varies as the
number of resource providers, model order, and number of
members in the group vary. We considered that the data is
given from all sensors to the nearby devices via bluetooth.
The time taken by different devices to execute one unit task
is a linear regression problem to estimate the model order.
For more details on how devices are profiled and on the time
taken to execute a unit task of G-causality the interested
reader is refereed to [14].

Figure 4(a) shows the performance of the three scheduling
approaches in terms of workload completion time. We see
that centralized execution as expected takes the maximum
amount of time followed by Round-Robin, whereas Schedule-
3 takes the minimum amount of time. We divide our sim-
ulation into three scenarios: in Scenario-1, we assume the
number of SP to be 5, number of team members to be 5 and
maximum model order to be 10. In Scenario-2, we increase
the maximum number of model order from 10 to 20 and in
Scenario-3 we increase the number of service providers from
5 to 10 with everything else remaining the same. The result
shows that time taken is very sensitive to the model order. In
Scenario-4 we vary both number of service providers and or-
der number to compare the time taken by distributing tasks
under different schedules. We see that Schedule-3 takes the
least amount of time. For Scenario-1 and 3, the time taken
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lag=4, and black indicates lag=1);(c) Sequence of different phases in a test to detect group stress.

of centralized execution is not affected by the number of SPs
and so it remains the same. Although both Round-Robin
and Schedule-3 divide the task among SPs, Round-Robin
performs worse than Schedule-3 because Schedule-3 assigns
tasks to SPs based on their computational capability.

Stress Propagation: We now present results for stress
propagation in a group. As discussed earlier, we use G-
causality to determine the extent and influence of stress from
one group member to another. To quantify the mental group
stress, we design our experiments to have four phases, as
seen in Fig. 4(c). Phase-2 and 4 are stress inducing phases
and cover questions from a wide range of topics like memory
based, arithmetic, and logical questions. In our analysis a
team consists of two members. One of the member of the
team serves as a master and assigns tasks to the other team
member. This will help us understand the propagation of
stress from master to the other team member. We perform
group stress detection for three different test cases: in Case-
1, the first team-member serves as a master and the other
team member (slave) receives instruction from the master,
while in Case-2 the second member serves as the master
(i.e., they switch their roles in the experiment). In Case-3
both the team members receive questions from a laptop (or
a person who is not a part of the experiment). Case-3 will
help us analyze the propagation of stress when each team
member performs task independently. During an experiment
the master assigns questions to slave, keeps track of the time,
and at the end of the experiment informs the slave about
his/her performance. We perform all the three cases thrice
and in a random order. Each repetition of a case is termed
as an experiment.

We present our results of propagation of stress using a bub-
ble diagram as depicted in Fig. 4(b), where each member
is represented by a bubble. From any node i to j the fol-
lowing attributes exist: thickness represents the magnitude
of G-causality from node i to j (clockwise edge), color of

the edge represents the model order number used to cal-
culate the G-causality, and size of the node represents the
average stress experienced by the person over the course of
experiment. Higher the influence of G-causality, thicker is
the edge, similarly higher is the stress level experienced by
a team member, bigger is the bubble size. We term the left
node ‘A’ and the right node ‘B’ for reference.

Now we will study the influence of G-causality between the
two team members for different cases. For Case-1, node B
serves as master and conducts the test for node A (slave).
We see that for Case-1 in all the three experiments the in-
fluence of G-causality from node B to node A is higher than
from A to B. Here, the dominant G-causality direction is
from B to A and the magnitude of influence is on an aver-
age 0.25. In Case-2, for all the experiments, the influence
of G-causality from node A to node B is higher than the
influence from node B to A. Here, the dominant G-causality
direction is from B to A and the magnitude of influence is
on an average 0.12.

In Fig. 5(a) and (b) we see the average stress of team mem-
ber A and B, respectively. Each subplot in Fig. 5(a) and
(b) contains average stress value of a team member for a
particular case over different experiments. We see that over
different phases a team member exhibits different stress be-
havior. We begin with relaxing phase (RX1) at this point
of time the stress is low and as the experiments proceed
the stress level increases. We observe that in both the fig-
ures the stress level reaches a maximum before falling down
again. This maximum is seen in Phase-4 (STR2) where a
team member experiences the highest stress in comparison
to Phase-3 (STR1). The fall in stress after STR2 is because
it is followed by RX2, which is a relaxing phase.

Figure 5(c) shows the correlation between stress data of
team members from each experiment over different time
lags. This is done for all the three cases. We notice that
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Figure 5: (a)Variation of stress over time for
team-member A; (b) Variation of stress over time
for team-member B; (c) Cross-correlation between
team members for different time lags.

the highest correlation between stress data of different team
members in Case-3 occurs when the same task is given to
each team member by a PC. This is because both the team
members are undergoing the experiment together and are
experiencing similar level of questions and time constraint,
which makes their data highly correlated as observed.

4. CONCLUSIONS

We presented real-time, in-situ stress detection via a dis-
tributed framework. In the series of experiments we saw
the direction of propagation and magnitude of stress in a
group. We also analyzed how this stress propagates over
time. The results of this analysis helps us quantify the di-
rection in which the stress propagates in a group. The work
presented will enable taking real-time decisions and see how
we can empower individuals who are in better condition (less
stressed) by putting them in charge of a situation. This will
help improve productivity in highly stressful situations like
military operations by for example reorganizing dynamically
hierarchy beyond existing ranks and roles.
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