
Available online at www.sciencedirect.com
www.elsevier.com/locate/comcom

Computer Communications 31 (2008) 489–505
Multicast algorithms in service overlay networks q

Dario Pompili a,*, Caterina Scoglio b, Luca Lopez c

a Rutgers, The State University of New Jersey, Department of Electrical and Computer Engineering, Piscataway, NJ 08854, USA
b Kansas State University, Department of Electrical and Computer Engineering, Manhattan, KS 66506, USA

c University of Rome La Sapienza, Department of System Engineering, 00184 Rome, Italy

Available online 29 August 2007
Abstract

Overlay routing enhances the reliability and performance of IP networks since it can bypass network congestion and transient outages
by forwarding traffic through one or more intermediate overlay nodes. In this paper, two algorithms for multicast applications in service
overlay networks are presented. The first algorithm is tailored for source-specific applications such as live video, software and file dis-
tribution, replicated database, web site replication, and periodic data delivery; it builds a virtual source-rooted multicast tree to allow one
member in the multicast group to send data to the other members. The second algorithm is tailored for group-shared applications such as
videoconference, distributed games, file sharing, collaborative groupware, and replicated database; it constructs a virtual shared tree
among group members. The objective of both algorithms is to achieve traffic balancing on the overlay network so as to avoid traffic
congestion and fluctuation on the underlay network, which cause low performance. To address these problems, the algorithms actively
probe the underlay network and compute virtual multicast trees by dynamically selecting the least loaded available paths on the overlay
network. This way, network resources are optimally distributed and the number of multicast trees that can be setup is maximized. Both
algorithms can offer service differentiation, i.e., provide QoS at application-layer without IP-layer support. The low computational com-
plexity of the proposed algorithms leads to time and resource saving, as shown through extensive simulation experiments.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Overlay networks; Multicast; Mathematical programming/optimization; Multirate layering
1. Introduction

Overlay routing has been proposed to enhance the reli-
ability and performance of IP networks since it can bypass
network congestion and transient outages by forwarding
traffic through one or more intermediate overlay nodes
[34,41,42]. Service overlay network is an effective means
to address end-to-end Quality of Service (QoS), plaguing
the current Internet, and to facilitate the creation and
deployment of value-added Internet services such as VoIP,
Video-on-Demand, and other emerging QoS-sensitive ser-
vices. While much of the past research in overlay network-
0140-3664/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2007.08.023

q This work was supported by the National Science Foundation (NSF)
under Grant No. ANI-0219829.

* Corresponding author. Tel.: +1 732 445 6400x202.
E-mail address: pompili@ece.rutgers.edu (D. Pompili).
ing has focused on techniques for building and
reconfiguring overlay networks, and evaluating their per-
formance (e.g., [3,17,30,37]), in this paper we present two
algorithms to build virtual multicast trees on an overlay
network for as many applications as live video, software
and file distribution, replicated database, web site replica-
tion, periodic data delivery, videoconference, distributed
games, file sharing, and collaborative groupware. More-
over, we propose a low complexity multirate layering algo-
rithm to support the virtual multicast algorithms by
accommodating heterogeneous receiver requested bit rates.

Throughout this paper, we consider two layers of net-
work infrastructure: the native network, which includes
end-systems, routers, links and the associated routing func-
tionality, and provides best-effort datagram delivery
between its nodes; and a virtual overlay network, which is
formed by a subset of the native layer nodes interconnected

mailto:pompili@ece.rutgers.edu

490 D. Pompili et al. / Computer Communications 31 (2008) 489–505
through overlay links to provide enhanced services. Over-
lay links are virtual in the sense that they are IP tunnels
over the native network.

The first proposed algorithm is called DIfferentiated ser-

vice Multicast algorithm for Internet Resource Optimization

(DIMRO). It builds virtual source-rooted multicast trees
for source-specific applications. DIMRO takes the virtual
link available bandwidth into account to avoid traffic con-
gestion and fluctuation on the underlay network, which
cause low performance. The objective is to keep the aver-
age link utilization of the overlay network low by fairly dis-
tributing data flows among the least loaded links. The
second algorithm is called DIfferentiated service Multicast

algorithm for Internet Resource Optimization in Group-
shared applications (DIMRO-GS). It constructs a virtual
shared tree for group-shared applications by connecting
each member node to all the other member nodes with a
source-rooted tree computed using DIMRO. To support
these algorithms, a novel low complexity layering algo-
rithm to accommodate heterogeneous receiver requested
bit rates is also proposed, which makes DIMRO and DIM-
RO-GS native multirate multicast algorithms on overlay
networks.

Both DIMRO and DIMRO-GS algorithms offer service

differentiation, i.e., provide QoS at application-layer with-
out IP-layer support. Consequently, multicast group mem-
bers with less stringent QoS requirements manage to reuse
resources already exploited by members with more strin-
gent requirements. This results in a better utilization of net-
work bandwidth, and in an improved QoS as perceived by
multicast group members.

To summarize, the main contributions of this work are:

(1) Development of QoS-aware multicast algorithms on
overlay networks, which are able to provide applica-
tion-layer QoS for multicasting without IP-layer
support.

(2) Design of low-complexity overlay multirate algo-
rithms to leverage the network bandwidth resources
and improve QoS as perceived by multicast group
members.

The remainder of the paper is organized as follows: in
Section 2, we provide a brief background on multicasting,
while in Section 3 we review the relevant literature on over-
lay networks. In Section 4, we formulate the logical chan-
nel rate assignment problem and describe DIMRO, while
in Section 5 we introduce DIMRO-GS. In Section 6, we
show numerical results through extensive simulation exper-
iments. Finally, in Section 7, we draw the main conclusions
and point future work.

2. Background on multicasting

In unicast transmissions, the sender transmits data to a
single receiver and, if multiple receivers want to receive
the same data content, the sender has to transmit multiple
copies of data. In multicast transmission, conversely, the
sender transmits only one copy of data that is delivered to
multiple receivers. This allows to efficiently exploit Internet
resource in as many applications as live video, software and
file distribution, replicated database, web site replication,
periodic data delivery, videoconference, distributed games,
file sharing, and collaborative groupware. One of the most
challenging objective in multicasting is to minimize the
amount of network resources utilized to compute and setup
multicast trees [32,33]. In multicast communication, the
routing problem is to find the minimum-weight tree that
spans all the nodes in the multicast group [15,36,40]. Multi-
cast communication can be classified into two types, i.e.,
source specific and group shared. In source-specific multicast
communication, only one node in the multicast group sends
data, while all the other member nodes receive data. In
group-shared multicast communication, each node in the
multicast group wants to send/receive data to/from member
nodes. A tree that spans all member nodes is called multicast

tree. Consequently, based on the communication strategy,
multicast trees can be classified into two types, i.e., source-

rooted trees and shared trees. A source-rooted tree has the
source node as root, and is optimized for source-specific
multicast communications, whereas a shared tree is opti-
mized for group-shared communications, and connects
each group member with all the other group members.

The classical optimization problem in source-specific
multicast communications is the Steiner tree Problem in

Networks (SPN) [2], whose objective is to find the least-cost
tree connecting the source and the group of destinations
with the minimum total cost over all links. If each destina-
tion has a bandwidth requirement, then the problem is to
find the least-cost tree that complies with the bandwidth
requirements on each path from the source to the receiver.
It can be shown that both these problems are at least as
complex as the geometric connected dominating set prob-
lem, which is proven to be NP-complete [21,28]. Hence,
both these problems are NP-complete, and efficient algo-
rithms to solve these problems in polynomial time attain
only approximate solutions in most cases [2,36].

In group-shared communication, one of the earliest pro-
tocol to build a shared tree was the Core-Based Protocol
(CBT) [5,6] and its enhanced version (CBTv2) [4], which
connect each member node to a core node using bi-direc-
tional shortest paths. The main drawback is the traffic con-
centration occurring in the core node. To avoid traffic
concentration, a shared tree can be computed by finding
as many source-rooted trees as the number of member
nodes, each of them with all the other member nodes as
leaves. The FTM algorithm [29,38], Feasible solutions
using adapted Takahashi–Matsuyama (TM) algorithm,
follows this approach. The source-rooted tree connects
the root node with the member node by using the path with
the greatest capacity. The bottleneck of a path is character-
ized as the link with the minimum available bandwidth,
and the path bandwidth capacity is defined as the available
bandwidth of its bottleneck. The path with the greatest

D. Pompili et al. / Computer Communications 31 (2008) 489–505 491
bandwidth capacity is called the widest path. The FTM
algorithm uses information obtained by the Breadth First
Search procedure (BFS) [20]. For each member node, the
BFS procedure builds a tree rooted at the member node
and connects each network node with this member node
by exploiting the widest path paradigm criterion.

While traditional multicast algorithms were integrated
in the IP layer, often with no QoS support, in this paper
we present two QoS-aware algorithms to build virtual mul-
ticast trees on an overlay network. Overlay routing has
been proposed to enhance the reliability and performance
of IP networks since it can bypass congestion and transient
outages by forwarding traffic through one or more interme-
diate overlay nodes [34,41,42]. In particular, we devise
algorithms to construct source-routed and shared multicast
trees by explicitly taking into account the available band-
width of virtual links in the overlay network, whereas most
of the past research on overlay networking has focused on
techniques for building and reconfiguring overlay net-
works, and evaluating their performance (e.g.,
[3,17,30,37]).

3. Related work

There has been extensive work on building multicast
algorithms on top of overlay networks, like in [12,13,
25,31], or even commercial schemes like BitTorrent or
Digital Fountain. However, neither of these algorithms
have addressed the QoS requirements of multicast group.
Conversely, our present contribution is focused on inte-
grating QoS in overlay multicasting. Specifically, we also
consider the common case in current network topologies
where the bottleneck link is likely to be on the last hop
near the clients, which are thus served at different
rates.

Several two-tier overlay multicast network infrastruc-
tures have been recently proposed as feasible solutions to
support scalable inter-domain multicast services for real-
time applications. In [35,26], a set of dedicated devices
called multicast service nodes (MSNs) are assumed to be
distributed in the network, typically collocated at the sites
of a selected number of access routers. It was shown in [35]
that it is useful to balance bandwidth usage among MSNs
for each multicast session. This way, the overlay multicast
network is able to support a larger number of concurrent
multicast sessions with good service qualities. Earlier pro-
posals for building an overlay multicast tree typically aim
to optimize the backbone tree that contains MSNs only
[7,35]. They assume that the MSN placement solution is
given and the access subtrees rooted at each particular
MSN are also given. The routing protocols proposed in
[7,35] addressed three constrained spanning tree problems:
(i) minimize the maximum end-to-end delay within the set
of MSNs subject to the interface bandwidth constraint at
each MSN; (ii) minimize the average end-to-end delay
within the set of MSNs subject to the interface bandwidth
constraint at each MSN; and (iii) balance the interface
bandwidth usage at each MSN subject to the bound on
the maximum end-to-end delay. Although the approaches
proposed in [7,35,26] are sound and very interesting, in
these papers each MSN is assumed to function not only
as a multicast server for the access router it is collocated
with, but also as a transit point for replicating and for-
warding real-time streaming traffic to other MSNs or
access routers in the overlay multicast network by means
of routine unicast mechanisms. This means that, according
to these approaches, the topology of the overlay multicast
network is considered as a fully connected mesh, which
may not hold in general.

In [23], QUEST, a QoS assUred composEable Service
infrasTructure is proposed, which can provide both QoS
assurances under multiple QoS constraints, and load bal-
ancing in service overlay networks. Service composition is
performed by the service composer using a service provi-
sioning protocol, which is designed based on a network-
centric client-service model. In [8], key functions of Skype,
a VoIP client developed by KaZaa in 2003, are studied by
analyzing its network traffic. Because of the overlay peer-
to-peer paradigm used, Skype allows its users to place voice
calls and send text messages to other users of Skype clients
almost seamlessly across Network Address Translations
(NATs) and firewalls. In [27], it is assumed that each
autonomous system in the Internet has one or more Over-
lay Brokers (OBs) that cooperate with each other to form
an overlay service network and provide overlay service sup-
port for overlay applications. Specifically, a QoS-aware
routing protocol for overlay network to balance the over-
lay traffic among OBs and overlay links is presented. Inter-
estingly, [27] introduces a general unified framework that
may be a desirable alternative to application-specific over-
lays. However, the routing solution proposed is tailored for
unicast transmissions, and does not address host multicast-
ing. In [16], the bandwidth provisioning problem in service
overlay networks is mathematically formulated, and the
critical issues concerning cost recovery in deploying and
operating the value-added services are analyzed. The
framework accounts for several factors such as Service
Level Agreement (SLA), service QoS, traffic demand distri-
butions, and bandwidth costs. Moreover, analytical models
and approximate solutions are developed for both static
and dynamic bandwidth provisioning.

As briefly reviewed in this section, most research work
on service overlay networks has addressed problems in
wide-area service composition such as the fault-resilience
problem, the adaptability problem, and the resource con-
tention problem to find a multimedia service path. The
QoS consistency and load partition issues for composing
service path in ubiquitous computing environments were
also addressed in several overlay network projects. How-
ever, still much needs to be done to support generic QoS
provisioning for host multicasting in service overlay net-
works. Hence, in this paper we tackle this problem by pro-
posing multicast algorithms on overlay networks with
generic virtual topologies.

492 D. Pompili et al. / Computer Communications 31 (2008) 489–505
4. DIMRO: Differentiated service Multicast algorithm for

Internet Resource Optimization

In this section, we present DIMRO, an efficient algo-
rithm to build source-rooted trees for source-specific appli-
cations. In particular, in Section 4.1, we formulate the
channel rate assignment problem for the exact determina-
tion of channel rates in a multirate multicast environment
to accommodate heterogeneous receiver requested bit
rates. In Section 4.2, we describe how DIMRO works in
non-QoS-aware overlay networks and show how this algo-
rithm manages to keep the probability of bottleneck occur-
rence low. Finally, in Section 4.3, we describe the main
improvements in DIMRO when a QoS-aware1 overlay net-
work is considered, and the full set of features of the algo-
rithm is described and analyzed.

4.1. Optimal channel rate assignment problem

In source-specific communications, multicast sessions
may have a large number of receivers with heterogeneous
reception capacities. To accommodate this heterogeneity,
we propose a novel layering scheme. In a layering scheme,
data transmission through the network takes place over
logical channels, i.e., a sender/receiver can simultaneously
transmit/receive data on multiple channels. In a multirate
multicast scenario, data on logical channel n is transmitted
at rate wn. Receivers subscribe to the layers cumulatively,
i.e., if a receiver subscribes to layer j, it also subscribes to
layers {1, 2, . . ., j � 1} and receives data at the cumulative
rate Lj ¼

Pj
n¼1wn. Two of the most well-know multirate

schemes are proposed in [9,10].
In [9], channel rates are determined to minimize the total

completion time, defined as the sum of all receivers’ comple-
tion time, i.e., the time that a receiver needs to download
the file. With M receivers and K channels, the algorithm
proposed in [9] has a computational complexity
O(M3 Æ K). Conversely, in the layering scheme introduced
in [10], channel rates are computed as follows:

wj ¼
b if j ¼ 1Pj�1

t¼1

wt if j > 1;

8<: ð1Þ

where b is a base rate. Cumulative rates computed by the
layering scheme in [10] match requested rates worse than
those calculated by the layering scheme in [9]. However,
1 In this paper, we define as QoS-aware overlay network a subset of the
native layer nodes interconnected through overlay links that are able to
provide differentiated services, i.e., different end-to-end QoS guarantees to
the applications. Such differentiation may be achieved by relying on
different topologies of the underlay networks, i.e., an overlay link may be
associated with a long underlay path for delay-insensitive low priority
class traffic, and with a short path for delay-sensitive high priority class
traffic. This service differentiation at the overlay network brings high
flexibility in QoS provisioning even when the underlay network provides
only best effort service, i.e., does not explicitly implement mechanisms to
support QoS.
the layering scheme in [10] allows dynamic multicast
groups, i.e., a receiver can join the group and start down-
loading the file at any time. This is possible since the trans-
mission on each channel is cyclic, which in turn is possible
because channel rates are given as in (1). However, the
objective function of the layering scheme in [10] does not
meet properties of fairness, as defined in [24], i.e., not all
receivers are offered the same service level. For this reason,
differently from [10], in this paper we determine channel
rates by minimizing the average ratio between requested
rate and cumulative rate subscribed by a receiver. This
way, our objective function meets properties of fairness,
as it will be clear in the following. We formulate hereafter
the channel rate assignment problem, while we refer the
reader to the Appendix for the detailed description of an
efficient algorithm to solve this problem in polynomial
time. This layering scheme is exploited by our overlay mul-
ticast algorithms.

In a layering scheme a file is divided into segments. Copies
of the same segment are transmitted through different logi-
cal channels. Fig. 1 shows an example of a ‘nested’ layering
scheme for multicasting. A data stream of length B is trans-
mitted over three channels to three receivers with maximum
rates W1 = 1, W2 = 3, and W3 = 4. The channel rates are set
to w1 = 1, w2 = 1, and w3 = 2. Receiver 1 subscribes to chan-
nel 1, receiver 2 to channels 1 and 2, and receiver 3 to all the
three channels. In this example, the sender partitions the
data stream into 4 equal-sized segments ‘a’, ‘b’, ‘c’, and ‘d’.
First segment ‘a’ is transmitted over channel 1, ‘b’ over chan-
nel 2, and ‘c’ and ‘d’ over channel 3. These concurrent trans-
missions finish at the same time B/4. At this time, only
receiver 3 has received the entire stream. The sender then
transmits segment ‘c’ over channel 1 and ‘d’ over channel
2 concurrently. When these transmissions complete (at time
B/2), receiver 2 has received all four segments, but receiver 1
still has not received segments ‘b’ and ‘d’. These are thus then
transmitted over channel 1. At time B, receiver 1 completes.
Fig. 1. Example of a ‘nested’ layering scheme for multicasting.

D. Pompili et al. / Computer Communications 31 (2008) 489–505 493
In this example, by using three channels for three receivers,
each receiver completes in its ideal completion time, i.e., each
receiver receives data at the demanded rate.

The number of logical channels used in a layering scheme,
indicated as K hereafter, is a critical parameter that should
be chosen by trading off different contrasting issues. By
increasing the number of channels K, in fact, the number
of file segments grows. The higher the number of file seg-
ments, the higher the complexity for a receiver to rebuild
the file. Furthermore, the more channels, the more copies
of the same segment are transmitted through different chan-
nels, i.e., the higher the overhead associated with the layering
scheme (in the above example, only segment ‘a’ is transmit-
ted once, while segments ‘b’ and ‘c’ are transmitted twice,
and segment ‘d’ three times). On the other hand, the higher
K, the easier to match the requested rates by assigning logical
channels. For applications with a large number of receivers
and high variability in rates, however, it is unrealistic to pro-
vide enough channels to match requested rates of all receiv-
ers. Hence, the optimal number of channels K* should be
determined to achieve as much benefit for the receivers as
possible, without incurring in excessive overhead.

Let us consider a set of M receivers with N different
requested bit rates W1 < . . . < WN, with N 6M. Let us
assume that the sender can setup a maximum number of
logical channels, Kmax, which depends on its computation
resources. Thus, the optimal number of channels K* the
sender will use is

K� ¼ minðKmax;NÞ: ð2Þ
If the number of logical channels K* is equal to the number
N of different requested rates, i.e., N 6 Kmax, then the log-
ical channel rates ðw1; ::;wK� Þ can be trivially chosen as

wi ¼ W i � W i�1; i ¼ 1; . . . ;N ; W 0 ¼ 0: ð3Þ
In this case, if a receiver with requested rate Wj sub-
scribes the set of channels {1, 2, . . ., j}, then it will receive
data at the cumulative rate Lj ¼

Pj
n¼1wn ¼ W j, which ex-

actly represents the requested rate at which it would re-
ceive data.

Conversely, if the number of channels K* is lower than
the number of requested rates N, i.e., Kmax < N, as it is the
case in a realistic scenario, then the cumulative rates
L1; . . . ; LK� can be determined by solving the optimization
problem P, whose objective is to achieve fairness among
all receivers, i.e., minimize the average ratio of requested
rate and cumulative rate subscribed by a receiver. This
way, each receiver is granted a bit rate whose distance to
its requested ideal rate is proportional to the ideal rate itself.

If we assume that each receiver is assigned a weight cm,
m = 1, . . .,M, then g1, . . .,gN in the objective function of P

are N weights such that gn, n = 1, . . .,N, is the sum of the
weights of those receivers asking for rate Wn. If, for
the sake of simplicity, all receivers are considered to have
the same weight c = 1, then gn represents the number of
receivers asking for rate Wn. We can now cast the optimal
logical channel rate assignment problem.
P: Optimal Logical Channel Rate Assignment Problem

Given : K�; N ; W n; n ¼ 1; . . . ;N

Find : Lk; yn;k; k ¼ 1; . . . ;K�; n ¼ 1; . . . ;N

Maximize : /ðL1; . . . ; LK� Þ ¼
XN

n¼1

gn

W n
� F n

Subject to : ð4Þ

F n ¼
XK�
k¼1

Lk � yn;k 6 W n; n ¼ 1; . . . ;N ; ð5Þ

Lk 2 fW 1; . . . ;W Ng; k ¼ 1; . . . ;K�; ð6Þ
yn;k 2 f0; 1g; k ¼ 1; . . . ;K�;

n ¼ 1; . . . ;N ; ð7ÞXK�
k¼1

yn;k ¼ 1; n ¼ 1; . . . ;N : ð8Þ

As in (5), Fn defines the cumulative rate obtained by a re-
ceiver with requested rate Wn. Constraints (7) and (8) imply
that F n 2 fL1; . . . ; LK�g; n ¼ 1; . . . ;N . Once the cumulative
rates Fn are determined by solving problem P, then the cor-
responding channels rates are easily computed as

wj ¼ Lj � Lj�1; j ¼ 1; ::;K�; L0 ¼ 0: ð9Þ

In the Appendix, we present an efficient algorithm to
exactly solve problem P in polynomial time, which is char-
acterized by a complexity O(K* Æ N2). We also provide an
example for the sake of clarity.

4.2. DIMRO in non-QoS-aware overlay networks

By simply minimizing the cost of multicast trees without
taking the overlay link bandwidth availability into account,
traffic congestion and fluctuation might occur in the under-
lay network, causing low performance. In fact, since many
multicast trees may use the same set of virtual links, these
links could be overloaded while other links in the network
could remain under-utilized. DIMRO follows a different
approach to tackle this problem. The virtual multicast
source-rooted tree is built by choosing the paths in the
overlay network that are least loaded. This way, DIMRO
achieves load balancing and an optimal distribution of
resources, which lead to maximize the number of multicast
trees that can be set up.

Let us consider a multirate multicast scenario where
receivers ask for different rates. If K* channels with rate
fw1; . . . ;wK�g are used in the layering scheme, then K* cumu-
lative rate L1; . . . ; LK� are available, as derived in P. Let s be
the source node, and let us assume that M receivers belong to
the multicast group. DIMRO proceeds as it follows:

Step 0: Receivers are ordered from the highest rate to
the lowest one. At the end of this step we have an ordered
set of M receivers {r1, . . ., rM}, with requested cumulative
rates F 1 P F 2 P . . . P F MðF j 2 fL1; . . . ;LK�g; j¼ 1; . . . ;MÞ.
Receivers from r1 to rM are connected to the source node
progressively. This way, receiver rj can reuse resources

494 D. Pompili et al. / Computer Communications 31 (2008) 489–505
already exploited on paths from the source to receivers
r1, . . ., rj�1. These receivers, in fact, ask for rates
F1 P F2 P . . . P Fj�1 P Fj.

Let Spath(s, rj) be the set of all feasible paths from s to rj.
A path p(s, rj) from source s to receiver rj is feasible if
buv P Fj for all its links, where buv is the available band-
width on overlay link (u,v).

Step j, j = 1, . . .,M: The algorithm chooses the path
pðs; rjÞ 2 Spathðs; rjÞ that minimizes the following function

f fpðs; rjÞg ¼
X

fðu;vÞ2pðs;rjÞg

auv

ð1� quvÞ
a ; pðs; rjÞ 2 Spathðs; rjÞ:

ð10Þ

(1) quv is the overlay link (u,v) utilization and it is
defined as

quv ¼
Buv � ðbuv � F jÞ

Buv
¼ Buv � buv

Buv
; ð11Þ

where Buv represents the total bandwidth capacity of vir-
tual link (u,v), Fj is the bandwidth exploited on link (u,v)
by receiver rj, and buv = buv � Fj is the residual bandwidth
of link (u,v). Notice that quv is calculated after that buv has
been decremented by Fj. These measurements are acquired
using techniques such as active or reactive probing on the
underlay network. Examples of these probing protocols
are the MIT RON (Resilient Overlay Networks) [3,18],
whose design goal is to allow end-hosts and applications
to cooperatively gain improved reliability and performance
from the Internet by examining the condition of the Inter-
net between themselves and the other nodes. On the other
hand, in [30], the authors argue that designing overlay ser-
vices to independently probe the Internet is an untenable
strategy. Instead, they propose PLUTO (PlanetLab Under-
lay Topology Services for Overlay Networks), a shared
routing underlay that overlay services query, and posit that
this underlay must adhere to two high-level principles.
First, it must take cost (in terms of network probes) into
account. Second, it must be layered so that specialized
routing services can be built from a set of basic primitives.
These principles lead to an underlay design where lower
layers expose large-scale, coarse-grained static information
already collected by the network, and upper layers perform
more frequent probes over a narrow set of nodes.

(2) The exponent a ¼ aðjVj; jEj; F ;BÞ in (10) is a function
of the number of nodes jVj and links jEj, the average rate F
requested by receivers, and the average network link band-
width B. According to accurate empirical observations
(described hereafter) supported by extensive simulation
results, the model for the exponent a has been chosen as

aðjVj; jEj;F ;BÞ¼ a � exp �b � jEj
jVj � ðjVj�1Þ

� �
� exp �c �F

B

� �
:

ð12Þ

Coefficients a, b, and c have been determined by solving the
following minimization problem of the quadratic error be-
tween the exponent model in (12) and the experimental
results,
Minimize :
XI

i¼1

½ai � aðjVji; jEji; F i;BiÞ�2

a 2 ½0; 3�; b 2 ½0;þ1Þ:
ð13Þ
Starting from a set of chosen points C ¼ fðjVji; jEji;
F i;BiÞ; i ¼ 1; . . . ; Ig, the optimum exponent ai was experi-
mentally obtained for each point ðjVji; jEji;F i;BiÞ 2 C of
the set. The coefficient a has been chosen belonging to
the interval [0,3] after an accurate tuning of the model. Val-
ues of coefficients a, b, c obtained by solving the minimiza-
tion problem (13) are a = 3, b = 3.9, and c = 16.9.

Let us now go back to the a model in (12) to explain why
this formula, with its variable aggregations F =B and
jEj=ðjVjðjVj � 1ÞÞ, is suitable to model the exponent in
(10). By decreasing the value of the exponent a, the length
of paths found by DIMRO is reduced because the differ-
ence between the metric of loaded links and the metric of
unloaded links is reduced. It could be necessary to reduce
the length of paths used by the multicast tree when the
average rate F requested by the receivers grows, or when
the average network bandwidth B decreases. In fact, the
higher the value of F , or the lower the value of B, the more
resources on each overlay link are consumed by a single
path. Thus, short paths have to be preferred. Simulations
show that when the ratio F =B increases, the value of the
optimal exponent a decreases exponentially.

As far as jVj and jEj are concerned, if the number of
links jEj decreases, there are less paths in the network,
and it becomes more important maximizing the resource
utilization. By increasing the value of the exponent a, the
difference between the metric of loaded links and unloaded
links increases. If the number of nodes jVj grows but the
number of links jEj remains the same, the exponent
increases because the number of paths decreases. Simula-
tions show that when the ratio jEj=ðjVjðjVj � 1ÞÞ decreases,
the value of the optimal exponent a grows exponentially.

(3) The binary variable auv is equal to 0 if virtual link
(u,v) already belongs to the tree, otherwise it is 1. If the
set Spath(s, rj) is not empty, let pðs; rjÞ be the path from
source s to receiver rj that minimizes the function in (10).
On each link (u,v) belonging to pðs; rjÞ, if auv = 0, the value
of the available bandwidth is not updated, and those band-
width resources already exploited by a path pðs; rtÞ, with
Ft P Fj, are used. Conversely, if auv „ 0, then new resources
must be used, and the new value of the available bandwidth
becomes b0uv ¼ buv � F j. Then, the binary variable auv is set
to 0 in order not to consider the cost of link (u,v) for those
paths that will exploit it in the future.

Let us point out that at Step j, j = 1, .., M, the optimal
path pðs; rjÞ 2 Spathðs; rjÞ can be found using a shortest-path
algorithm (as Dijkstra or Bellman–Ford algorithm), where
the length of each link in the network is set to

D. Pompili et al. / Computer Communications 31 (2008) 489–505 495
duv ¼
auv

ð1�quvÞa
if buv P F j

1 if buv < F j or ðu; vÞ 62 E:

(
ð14Þ

In this work we use the Bellman–Ford algorithm [14],
which finds a spanning tree of the shortest paths from
the source to all other nodes of the graph. Therefore, the
path p(s,n) from node s to node n, solution of (10), is the
one that minimizes the functionX
fðu;vÞ2pðs;nÞg

duv: ð15Þ

Computational complexity: The complexity of DIMRO
is OðM � jVj � jEjÞ since it builds the virtual multicast tree
by computing for as many as M times the spanning tree
using the Bellman–Ford algorithm, whose complexity is
OðjVj � jEjÞ.

4.3. DIMRO in QoS-aware overlay networks

In this section, the DIMRO algorithm is extended to
leverage the differentiated service provided by QoS-aware
overlay networks, i.e., able to provide differentiated services

(different end-to-end QoS guarantees to the applications).
Let us consider a multirate multicast scenario where receiv-
ers ask for the same data content but different rates and dif-
ferent QoS. In this scenario, the extended DIMRO
algorithm allows a receiver to reuse the bandwidth already
exploited by receivers asking for higher service classes with-
out any extra cost for the network. By building a path from
source s to a receiver r, the DIMRO algorithm can reuse
some sub-paths already exploited by higher service class
receivers. Thus, receiver r obtains a better QoS, and the
network saves resources because bandwidth already
exploited by other receivers is reused for receiver r. DIM-
RO in a QoS-aware overlay network proceeds into steps,
described hereafter.

Step 0: Receivers are ordered according to their service
class and rate. Let us consider a set R made up of M receiv-
ers. Let CL ¼ fcl1; . . . ; clLg be the set of service classes
requested by receivers, where cl1 is the highest service class
and clL is the lowest one. The set of receivers R is parti-
tioned into L ¼ jCLj subsets,

R ¼
[L
i¼1

Ri: ð16Þ

Subset Ri is made up of those receivers asking for service
class cli, i = 1, . . .,L. Receivers in each subset Ri, are or-
dered from the highest rate to the lowest one. Let us con-
sider a partitioned and ordered set R made up of M

receivers. Let ri
j be the receiver j in the subset Ri with re-

quested rate F i
j � jRij stands for the cardinality of Ri, and

i represents the associated service class.
Step i, i = 1, . . .,L: DIMRO connects source s with all

those receivers asking for service class cli. Initially, the bin-
ary variables auv are set to 1 for each overlay link (u,v). For
receiver ri

j, j ¼ 1; . . . ; jRij, auv are set to 0 for all those over-
lay links (u,v) already used by receivers that ask for higher
service class and higher or equal rate then ri

j. In fact,
resources already exploited by the tree on these links could
be used by ri

j without any added cost.
Let buv(cli) be the available bandwidth of link (u,v) for

the service class cli. A path pðs; ri
jÞ from source s to a recei-

ver ri
j asking for cumulative rate F i

j is feasible if
buvðcliÞP F i

j for all its links. DIMRO chooses that feasible
path pðs; ri

jÞ from s to ri
j that minimizes the following

function,

f fpðs; ri
jÞg ¼

X
fðu;vÞ2pðs;ri

jÞg

auv

ð1� quvðcliÞÞa
;

pðs; ri
jÞ 2 Spathðs; ri

jÞ; ð17Þ

where Spathðs; ri
jÞ is the set of feasible paths from s to ri

j.
Exponent a is defined as in (12), and utilization quv(cli)

of the overlay link (u,v) is calculated as

quv ¼
BuvðcliÞ � ½buvðcliÞ � F i

j�
BuvðcliÞ

; ð18Þ

where Buv(cli) is the bandwidth capacity of overlay link
(u,v) for the class cli, and F i

j is the cumulative rate re-
quested by ri

j.
For each overlay link (u,v) belonging to path pðs; ri

jÞ, if
auv = 0 then the available bandwidth buv(cli) is not updated
and the new path uses those resources already exploited by
other receivers. Conversely, if auv „ 0, then new resources
have to be exploited and the new value of the available
bandwidth becomes b0uvðcliÞ ¼ buvðcliÞ � F i

j. Then, the bin-
ary variable auv is set to zero.

The DIMRO algorithm determines the path pðs; ri
jÞ by

using a modified shortest-path algorithm. Common short-
est-path algorithms could choose one of the possible paths
with zero cost from s to n, but this shortest path, as it will
be clear in the following example, might not be correct. To
determine a correct path the algorithm proceeds as it
follows.

Starting from node s, the first link (u,v) belonging to
pðs; ri

jÞ with auv „ 0 is found. Among all those paths in
the tree exploiting a bandwidth equal or greater than F i

j

and passing through node u, it is chosen the one that uses
the highest service class. Let us indicate this path with ~pu.
The new path ~pðs; ri

jÞ from s to ri
j is the concatenation of

the sub-path from s to node u, belonging to path ~pu, and
the sub-path from node u to ri

j, belonging to pðs; ri
jÞ.

Example. Fig. 2 shows a multicast tree on the overlay
network where receiver r1 (node 6) asks for a rate F1 = 2
and a QoS mapped into service class A, receiver r2 (node 8)
asks for a rate F2 = 3 and a QoS mapped into service class
B, and receiver r3 (node 7) asks for a rate F3 = 2 and a QoS
mapped into service class C. In this example, we assume A
to be the highest service class, while C to be the lowest.
Path from source s, node 1, to receiver r1 is the first to be
built. Receiver r2 asks for a service class B but a rate
F2 = 3 > F1 = 2, thus the binary variables auv are not set to

Fig. 2. Correct path computation.

496 D. Pompili et al. / Computer Communications 31 (2008) 489–505
0 on links of path from node 1 to node 6. Path from node 1
to node 8 is built. Let p(s, ri) be the path from source s to
receiver ri. Receiver r3 asks for a service class C and a rate
F3 = F1 = 2 < F2 = 3 thus, on each link of paths p(s, r1)
and p(s, r2), auv are set to 0 because r3 can reuse resources
already exploited by other receivers. By using a common
shortest-path algorithm, path �p ¼ f1 ! 2 ! 3 !
5 ! 7g might be found from source s to receiver r3 (node
7) because paths {1 fi 2 fi 3 fi 5} and {1 fi 4 fi 3 fi 5}
have both cost equal to zero. The point is that path �p
cannot be taken into consideration since link (3,5) belongs
only to the path {1 fi 4 fi 3 fi 5 fi 8)} (p(s, r2) in Fig. 2)
and not to the path {1 fi 2 fi 3 fi 6} (p(s, r1) in Fig. 2).
For the mentioned reason, it should be clear that the
correct path is {1 fi 4 fi 3 fi 5 fi 7}. Once the shortest-
path algorithm has determined a path from the source s,
node 1, to receiver r3, node 7, the last node of the zero cost
path is determined, node 5 in Fig. 2. All paths connecting
the source with those receivers that ask for a higher or
equal service class and a higher or equal requested rate
than r3 are visited (in Fig. 2 path from s to r1 and from s to
r2). Only path from s to r2has a sub-path {1 fi 4 fi 3 fi 5}
from s to node 5. Thus, path {1 fi 4 fi 3 fi 5} is chosen
among all path with zero cost from s to node 5. Finally, the
correct paths {1 fi 4 fi 3 fi 5 fi 7} from s to r3 is selected.
5. DIMRO-GS: Differentiated service Multicast algorithm

for Internet Resource Optimization in Group-shared

Applications

In this section, we present DIMRO-GS, an efficient
algorithm to build shared trees for group-shared multicast
communications. A shared tree is a generalization of a
source-rooted tree. In a source-rooted tree the source node
multicasts data to a set of receiver nodes, whereas in a
shared tree each member node can multicast data to all
the other member nodes (videoconference is probably the
most common multicast application requiring a shared
tree, but many others applications are conceivable such
as distributed games, file sharing, collaborative groupware,
replicated database, etc.)
In Section 5.1, we explain how DIMRO-GS works in non-
QoS-aware overlay networks and show how this algorithm
manages to keep the probability of bottleneck occurrence
low. In Section 5.2, we point out the main improvements in
DIMRO-GS when QoS-aware overlay networks are consid-
ered. In this last case, the full set of features characterizing
DIMRO-GS is described and analyzed.

As briefly introduced in Section 1, a possible approach
to build a shared tree is using the Core-Based Protocol
(CBT) [5,6] or its enhanced version (CBTv2) [4]. The main
drawback with this approach is the traffic concentration
occurring in the core node. Thus, some links might be over-
loaded, specially in multicast applications with high band-
width requirements. Moreover, multicast trees set up with
this approach are quite easy to be computed, but are far
from being optimized. Let us consider an extreme example
to catch the inefficiency of this protocol: if two member
nodes had a link connecting each other, still their traffic
would pass through the core node, no matter the state of
their common link.

To avoid traffic concentration a shared tree can be com-
puted by separately finding M source-rooted trees (where
M is the number of member nodes). The source-rooted tree
i, i = 1, . . .,M, has the member node ni as root and all the
other member nodes nj, j = 1, . . .,M (with j „ i), belonging
to the tree, not necessarily as leaves. The FTM (Feasible
solutions using adapted TM algorithm) algorithm, pro-
posed in [29,38], follows this approach. The source-rooted
tree i, i = 1, . . .,M connects the root node ni with the mem-
ber node nj, j = 1, . . .,M, j „ i, by using the path with the
greatest capacity from node ni to node nj. The bottleneck
of a path is characterized as the used link with the mini-
mum available bandwidth, and the path bandwidth capac-
ity is defined as the available bandwidth of its bottleneck.
The path with the greatest bandwidth capacity from node
ni to node nj is called the widest path. The FTM algorithm
uses information obtained by the Breadth First Search pro-
cedure (BFS) [20]. For each member node the BFS proce-
dure builds a tree rooted at the member node and
connecting each network node with this member node by
exploiting the widest path paradigm criterion. After M

BFS trees are built rooted at each group member ni, the
detailed pieces of information about the widest path con-
necting each pair of member nodes are available.

In the next step, FTM builds M multicast source-rooted
trees, one for each group member ni. As far as the member
node ni is concerned, paths with the maximum bandwidth
capacity will be used by the source node ni to join all the
other group member. If two or more paths with the same
bandwidth capacity are found at the same time, the one
with the least cost is selected. In order to generate each
multicast tree, two tables must be available, i.e., the band-

width capacity table and the path cost table. These tables
are both M � jVj in size, where M is the number of members
and jVj is the number of overlay nodes.

Computational complexity: The FTM computational
complexity is dominated by the BFS complexity, which is

D. Pompili et al. / Computer Communications 31 (2008) 489–505 497
OððjVj þ jEjÞ � jVj2Þ. Thus, building M multicast trees by
exploiting the FTM algorithm is OðM � ðjVj þ jEjÞ � jVj2Þ.

5.1. DIMRO-GS in non-QoS-aware overlay networks

In Section 4 the DIMRO algorithm has been presented.
This algorithm can be modified to build multicast shared
trees. We call this modified algorithm DIMRO-GS (Group
Shared DIMRO). If there are M group members, the
shared tree can be set up by building M source-rooted
trees, each one having a different group member as root
and all the other group members belonging to the tree,
not necessarily as leaves. Each source-rooted tree can be
built according to the DIMRO algorithm. Let us assume
that each group member has the same bandwidth require-
ment, i.e., W j ¼ eW , j = 1, . . .,M. In this case, the first step
of the DIMRO algorithm, aimed at ordering receivers
according to their bandwidth requirement, is skipped.
When M source-rooted trees are computed, the shared tree
is completed. From then on, each member group can send
data to all the other members and receive data from all the
other members.

Computational complexity: In the shared-tree case, if M

is the number of group members, then M source-rooted
trees have to be built. The computational complexity for
each source-rooted tree by using the DIMRO algorithm
is OðM � jVj � jEjÞ, as seen in Section 4.2; hence, the compu-
tational complexity of the DIMRO-GS algorithm becomes
OðM2 � jVj � jEjÞ.

It has been shown in the previous section that the com-
putational complexity of the FTM algorithm is
OðM � ðjVj þ jEjÞ � jVj2Þ. Since in most practical case
M � jVj, the computational complexity of the proposed
algorithm is lower than the FTM complexity. Further-
more, FTM needs two tables of size M � jVj that must be
stored in memory, while in DIMRO-GS no table is
required.

5.2. DIMRO-GS in QoS-aware overlay networks

In this section, the DIMRO-GS algorithm is extended
for QoS-aware overlay networks. Let us consider a multi-
cast scenario where members in a group-shared communi-
cation can ask for different QoS requirements. The
extended DIMRO-GS algorithm allows a group member
acting as receiver to reuse the bandwidth already exploited
by group members asking for higher service classes, with-
out any extra cost for the network. By building a path from
a group member s, acting as source, to a group member r,
acting as receiver, DIMRO-GS can reuse some sub-paths
already exploited by group members, acting as receivers,
with more stringent QoS requirements. Thus, group mem-
ber r obtains a better QoS and the network saves resources
because bandwidth already exploited by other group mem-
bers is reused for group member r. The extended DIMRO-
GS algorithm in a QoS-aware overlay network proceeds as
follows.
Let us consider a set R made up of M group members.
At the first step, group members are ordered from the high-
est service class to the lowest one. The set R is ordered per
service class, i.e., if i < j, then member group ni asks for a
higher or equal service class then nj. In the following, we
provide a simple example to show how DIMRO-GS works.

Example. Let us consider a simple differentiated service
overlay network with only four different classes of service:
A, B, C, D. Let us assume that A is the highest service class,
whereas D is the lowest one. Let us indicate a group
member r with the couple (F;C) = (Requested Rate;Service

Class) representing the rate and service class requested by
group member r. Let us consider the following multicast
group: R ¼ fð1; BÞ; ð1; AÞ; ð1; BÞ; ð1; DÞ; ð1; CÞ; ð1; CÞg. The
algorithm proceeds as it follows.

Step 0: The multicast group is sorted per service class in
a lexicographic order, as shown hereafter:

R� ¼ fð1; AÞ; ð1; BÞ; ð1; BÞ; ð1; CÞ; ð1; CÞ; ð1; DÞg:
Step i, i = 1, . . .,M: DIMRO-GS uses the DIMRO algo-

rithm to builds a source-rooted tree with the member node
ni as root and all the other member nodes belonging to the
tree. At the beginning of Step i, the binary variables auv are
initialized to 1 for each overlay link (u,v). Let clj be the ser-
vice class requested by the group member nj, j = 1, . . .,M,
nj „ ni, acting as receiver, and let buv(clj) be the available
bandwidth for the service class clj on link (u,v). A path
p(ni, nj) from node ni to node nj is feasible if buvðcljÞP eW
for all its links (eW is the rate requested by each group
member). For each group member nj, j = 1, . . .,M, nj „ ni

DIMRO chooses that feasible path pðni; njÞ from ni to nj

that minimizes the following function

f fpðni; njÞg ¼
X

fðu;vÞ2pðni ;njÞg

auv

ð1� quvðcljÞÞa
;

pðni; njÞ 2 Spathðni; njÞ;
ð19Þ

where Spath(ni, nj) is the set of all feasible paths from ni to
nj. For each overlay link (u,v) belonging to path pðni; njÞ, if
auv = 0, then the available bandwidth buv(clj) is not up-
dated, and the new path uses those resources already
exploited by another member group, acting as receiver,
that asks for a higher or equal service class. Conversely,
if auv „ 0, then new resources must be exploited and, thus,
the new value of the available bandwidth becomes
b0uvðcljÞ ¼ buvðcljÞ � eW . Then, variable auv is set to 0. In this
way, the path from ni to nt, t = j + 1, .., M, can reuse re-
sources already used on path pðni; njÞ without any adding
cost for the network.
6. Simulation results

6.1. Random network model

To ensure a fair evaluation of different routing algo-
rithms, a random overlay network has been generated

30

40

50

60

70

80

90

100
DIMRO and OSTP Rejection Rate in Network 1

R
ej

ec
tio

n
R

at
e

[%
]

DIMRO
OSTP

498 D. Pompili et al. / Computer Communications 31 (2008) 489–505
according to the Waxman’s model [39,11]. In the Wax-
man’s model, network nodes are randomly distributed
across a Cartesian coordinate grid. Virtual links are added
to the graph by considering all possible pairs (u,v) of nodes
and by using the probability function,

P eðu; vÞ ¼ b � exp � duv

a � Dmax

� �
; ð20Þ

where Pe(u,v) is the existence probability of a link between
nodes u and v, duv is the Euclidean distance between the
node u and the node v, Dmax is the maximum possible dis-
tance between a pair of nodes, a and b are parameters in
the range (0, 1]. A high a value increases the number of con-
nections to nodes further away, while a high b value in-
creases the node degree.

Unlike the original Waxman’s model [39], we assume
that each link added to the network is bi-directional. The
bandwidth capacity Buv of each link (u,v) is randomly gen-
erated using an uniform distribution with mean bandwidth
B. Consequently, link (u,v) bandwidth capacity Buv may be
different from link (v,u) bandwidth capacity Bvu.

In this work, two different one hundred node random
networks are generated, according to Table 1. Network 2
has a higher number of links than Network 1, according
to the probability function in (20). The average bandwidth
in both networks is B ¼ 100 Mbps.

6.2. DIMRO performance evaluation

The DIMRO algorithm is compared to the optimal solu-
tion of the Steiner tree problem when all link costs are
equal to 1. If every link has a cost equal to 1, then the min-
imum-weight tree that spans all group members is the mul-
ticast tree that uses the least number of links. The
minimum-weight tree is found by solving the flow formula-
tion of the Steiner tree problem proposed in [15,40]. We
implemented the Integer Linear Programming (ILP) prob-
lem in AMPL [19] and solved it with the CPLEX [1] solver.

DIMRO and the optimal solution of the Steiner tree
problem with unitary costs are compared by using two met-
rics: the Rejection Rate and the Network Load. For each
simulation campaign several experiments have been run
to ensure a 95% relative confidence intervals smaller than
5%.

Starting from a completely unloaded Waxman network
[39], we try to build a fixed number of source-rooted trees,
the so-called Number of Requested Trees in the following.
Multicast groups are sequentially randomly generated.
Multicast group members (source and receivers) are ran-
domly chosen among network nodes. The number of
Table 1
Network parameters

a b B nodes

Overlay Network 1 0.2 0.4 100 Mbps 100
Overlay Network 2 0.3 0.6 100 Mbps 100
receivers for each multicast group is uniformly distributed
from 5 to 15, and the bandwidth request of each receiver is
uniformly distributed from 0.1 to 2 Mbps.

To evaluate the performance of DIMRO in the different
simulated scenarios, we use two metrics, namely the Rejec-
tion Rate and the Network Load.

(1) The Rejection Rate is defined as

Rejection Rate ¼ Number of Rejected Trees

Number of Requested Trees
; ð21Þ

where the Number of Requested Trees is the total number
of source-rooted trees sequentially generated, while the
Number of Rejected Trees is the number of requested
source-rooted trees that cannot be built because there are
not enough resources in the network.

(2) The Network load �q is defined as

�q ¼
P
fðu;vÞ2Egquv

jEj ; ð22Þ

where E is the set of network links, jEj its cardinality, and
quv is the Link Load of link (u,v), defined as

quv ¼
Used Bandwidth of link ðu; vÞ

Bandwidth Capacity of link ðu; vÞ : ð23Þ

Fig. 3 shows that the DIMRO Rejection Rate in Net-
work 1 is lower than the Rejection Rate of the Optimal
solution of the Steiner Tree Problem (OSTP) with
cuv = 1. The Rejection Rate is approximately the same until
the Number of Requested Trees is less than 2500. When the
Number of Requested Trees overcomes this threshold,
DIMRO shows a lowerRejection Rate.

Both DIMRO and OSTP Rejection Rates grow at the
growing of the Number of Requested Trees because
the same bottlenecks occur. These bottlenecks depend on
the network topology and cannot be avoided, but the
1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

10

20

Number of Requested Trees

Fig. 3. DIMRO and OSTP Rejection Rate in Overlay Network 1.

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
20

30

40

50

60

70

80

90

100
DIMRO and OSTP Network Load in Network 1

Number of Requested Trees

N
et

w
or

k
Lo

ad
 [%

]

DIMRO
OSTP

Fig. 4. DIMRO and OSTP Network Load in Overlay Network 1.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

x 104

0

10

20

30

40

50

60

70

80

90

100
DIMRO and OSTP Rejection Rate in Network 2

Number of Requested Trees

R
ej

ec
tio

n
R

at
e

[%
]

DIMRO
OSTP

Fig. 5. DIMRO and OSTP Rejection Rate in Overlay Network 2.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

x 104

0

10

20

30

40

50

60

70

80

90

100
DIMRO and OSTP Network Load in Network 2

Number of Requested Trees

N
et

w
or

k
Lo

ad
 [%

]
DIMRO
OSTP

Fig. 6. DIMRO and OSTP Network Load in Overlay Network 2.

D. Pompili et al. / Computer Communications 31 (2008) 489–505 499
DIMRO Rejection Rate is lower because bottlenecks occur
later. Fig. 4 shows that the DIMRO Network Load is
lightly lower than the OSTP Network Load until the Rejec-
tion Rate is the same. Then, since DIMRO rejects less
trees, its Network Load is higher than the OSTP one.

Network 2 has a higher number of links than Network
1, according to (20) and the network parameters in Table
1. In this second type of network, the DIMRO Rejection
Rate is significantly lower than the OSTP Rejection Rate
(Fig. 5). This is because less unavoidable bottlenecks2 exist.
Since Network 2 has a higher number of links, the number
of possible paths between two nodes grows, and it is easier
for the DIMRO algorithm to avoid bottlenecks. A lower
Network Load (Figs. 4 and 6) with a higher Rejection Rate
(Figs. 3 and 5) proves that OSTP does not use efficiently
network resources. In fact, bottlenecks degrade network
performance and not all available resources can be
exploited.
6.3. DIMRO-GS performance evaluation

To evaluate the performance of DIMRO-GS and FTM
in different simulated scenarios, we use the two metrics pre-
viously introduced (slightly adapted to the group-shared
case, as will be clarified in the following) plus a third met-
ric, namely the Number of Links.

(1) The Rejection Rate is defined as in (21), but now the
Number of Requested Trees is the total number of shared
trees sequentially generated, and the Number of Rejected
Trees is the number of requested shared trees that cannot
be built because there are not enough resources in the net-
work. Shared groups are sequentially randomly generated.
2 An unavoidable bottleneck is a bottleneck that depends on the
network topology and not on the algorithm used in the network. For
example, if only one path exists between two nodes, all communications
between these two nodes must use this path.
For each multicast group, members are randomly chosen
among network nodes. The number of members for each
multicast group is uniformly distributed from 5 to 15,
and the bandwidth requirement of each multicast group
is uniformly distributed from 0.1 to 2 Mbps.

(2) The Network Load is defined exactly as in (22).
(3) The Number of Links is the total number of used

links to connect each group member.
For each simulation several experiments have been run

to ensure a small confidence region (95% relative confi-
dence intervals smaller than 5%). Simulation results for
both Network 1 and Network 2 show (Figs. 7 and 9) that
at the growing of the Number of Requested Trees, the
FTM Rejection Rate is significantly higher than the one
of the DIMRO-GS algorithm. This can be explained by
considering that the FTM algorithm uses a higher amount
of network resources. In fact, when the Number of
Requested Trees increases, the FTM Network Load is sig-

100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100
DIMROGS and FTM Rejection Rate in Network 1

Number of Requested Trees

R
ej

ec
tio

n
R

at
e

[%
]

DIMROGS
FTM

Fig. 7. DIMRO-GS and FTM Rejection Rate in Overlay Network 1.

100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100
DIMROGS and FTM Network Load in Network 1

Number of Requested Trees

N
et

w
or

k
Lo

ad
 [%

]

DIMROGS
FTM

Fig. 8. DIMRO-GS and FTM Network Load in Overlay Network 1.

400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

90

100
DIMROGS and FTM Rejection Rate in Network 2

Number of Requested Trees

R
ej

ec
tio

n
R

at
e

[%
]

DIMROGS
FTM

Fig. 9. DIMRO-GS and FTM Rejection Rate in Overlay Network 2.

200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

90

100
DIMROGS and FTM Network Load in Network 2

Number of Requested Trees

N
et

w
or

k
Lo

ad
 [%

]

DIMROGS
FTM

Fig. 10. DIMRO-GS and FTM Network Load in Overlay Network 2.

10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

DIMROGS and FTM average number of exploited links

Group Size [# of members]

N
un

be
r

of
 e

xp
lo

ite
d

lin
ks

DIMROGS Network 1
FTM Network 1
DIMROGS Network 2
FTM Network 2

Fig. 11. DIMRO-GS and FTM average number of link.

500 D. Pompili et al. / Computer Communications 31 (2008) 489–505
nificantly higher than the DIMRO-GS Network Load
(Figs. 8 and 10). This implies that network resources satu-

rate later when DIMRO-GS is used, causing a lower Rejec-
tion Rate for this algorithm. The lower is the number of
links, the more bottlenecks degrade network performance.
Figs. 9 and 10 show that DIMRO-GS achieves a lower
Rejection Rate and a higher Network Load in Network
2. Conversely, in Network 1 (Figs. 7 and 8) bottlenecks
do not allow to efficiently exploit all network resources.

Moreover, the Number of Links in a shared tree built by
the FTM algorithm is higher than the Number of Links in
the same shared tree built by DIMRO-GS, as shown in
Fig. 11. This means that the amount of network resources
used by FTM is higher than the amount of network
resources exploited by DIMRO-GS. At the growing of
the group size, the Number of Links that make up the
shared tree built by the proposed algorithm grows slower

A B C D
0

10

20

30

40

Service Class

N
um

be
r

of
R

ec
ei

ve
rs

 #
 1

0

A B C D
0

10

20

30

40

N
um

be
r

of
R

ec
ei

ve
rs

 #
 2

0

A B C D
0

10

20

30

40

N
um

be
r

of
R

ec
ei

ve
rs

 #
 3

0

DiffServ integrated
Non DiffServintegrated

Service Class

Service Class

N
et

w
or

k
Lo

ad
 [%

]

Fig. 12. DIMRO Network Load vs. service class.

A B C D
0

10

20

30

40

Service Class

N
um

be
r

of
 G

ro
up

M
em

be
rs

 #
 1

0

A B C D
0

10

20

30

40

Service Class

N
um

be
r

of
 G

ro
up

M
em

be
rs

 #
 2

0

A B C D
0

10

20

30

40

Service Class

N
um

be
r

of
 G

ro
up

M
em

be
rs

 #
 3

0
DiffServ integrated
Non DiffServintegrated

N
et

w
or

k
Lo

ad
 [%

]

Fig. 13. DIMRO-GS Network Load vs. service class.

D. Pompili et al. / Computer Communications 31 (2008) 489–505 501
than the Number of Links that makes up the shared tree
built by the FTM algorithm, in both Network 1 and Net-
work 2 (Fig. 11).

Fig. 11 shows also that the Number of Links that make
up the shared tree built by the DIMRO-GS algorithm is
greater in the first network than in the second one. This
is because when the number of links in the network grows,
the value of the exponent decreases. Thus, paths built by
the proposed algorithm are shorter, and the Number of
Links that makes up the shared tree is lower.

6.4. DIMRO and DIMRO-GS performance evaluation in

differentiated service overlay networks

In this section, we compare the performance of the
extended DIMRO and DIMRO-GS algorithms in QoS-
aware overlay networks with the simple case in which a
group member/receiver cannot reuse the bandwidth
exploited by another group member/receiver with more
stringent QoS requirements.

Network nodes are randomly placed on a Cartesian
coordinate grid and links are generated according to the
probability function in (20). Since we need to generate a
QoS-aware overlay network, we consider the bandwidth
capacity of a link for each service class. For the sake of
simplicity, let us consider a differentiated service overlay
network with only four service classes, which we indicate
with A, B, C, D, where A is the highest service class and
D is the lowest one. Let Buv(cl) be the bandwidth capacity
of overlay link (u,v) for service class cl, cl 2 {A, B, C, D}.
The bandwidth capacity Buv(cl) for each service class on
link (u,v) is randomly generated by using an uniform distri-
bution with mean bandwidth BðclÞ. For this simulation
campaign, a one hundred node network has been randomly
generated, with parameters a = 0.2 and b = 0.4, i.e., Net-
work 1 according to Table 1. The link bandwidth capacity
for each service class cl 2 {A, B, C, D} is uniformly distrib-
uted with mean bandwidth BðclÞ equal to 25 Mbps.

We consider the Network Load as defined in (22) for
each service class, when 50 randomly generated source-
rooted trees are built by the DIMRO algorithm. Each
receiver asks for a rate uniformly distributed in the range
[0.1,2] Mbps, and a service class randomly selected within
the set {A, B, C, D}. Moreover, a 5-channel layering
scheme is used, as described in Section 4.1.

For each simulation several experiments have been run
to ensure a small confidence region (95% relative confi-
dence intervals smaller than 5%). Fig. 12 shows that DIM-
RO in differentiated service overlay networks performs
better than its not extended counterpart. Furthermore,
the Network Load decreases with the service class. In par-
ticular, the lowest service class D has the lowest Network

Load because D class receivers can reuse bandwidth
already exploited by all other receivers. In differentiated
service overlay networks DIMRO performs better than in
non QoS-aware networks, and this becomes more and
more evident when the number of receivers increases.
Fig. 12 shows that for 30 receivers the Network Load for
service classes B, C and D is significantly lower then the
Network Load relative to these service classes when DIM-
RO works in non-QoS-aware overlay networks (the Net-
work Load is reduced respectively by 23%, 33%, and
40%, as can be easily seen in Fig. 12).

As far as DIMRO-GS is concerned, we consider the
Network Load of each service class when a multicast group
is randomly generated and the DIMRO-GS algorithm is
used to build the corresponding shared tree. The group
asks for a rate uniformly distributed in the range
[0.1,2] Mbps, and each group member asks for a service
class randomly selected within the set {A, B, C, D}.

Fig. 13 shows that DIMRO-GS in QoS-aware overlay
networks performs better than in non-QoS-aware overlay
networks. The Network Load decreases with the service
class (the lowest service class D has the lowest Network
Load). Moreover, performance of DIMRO-GS in QoS-

5 10 15 20 25 30 35 40 45 50 55
25

30

35

40

45

50

55

DIMRO Lucky Receiver Rate

Number of Receivers

Lu
ck

y
R

ec
ei

ve
r

R
at

e
[%

]

3 CHANNEL LAYERING SCHEME
5 CHANNEL LAYERING SCHEME

Fig. 14. DIMRO Lucky Receivers.

502 D. Pompili et al. / Computer Communications 31 (2008) 489–505
aware overlay networks improves when the number of
group members increases.

When a group member/receiver reuses resources already
exploited by a receiver with more stringent QoS require-
ments, it obtains a better QoS than that it requires, with
no extra cost to the network. We call lucky receivers (lucky

members in the DIMRO-GS case) those receivers (mem-
bers) that use the bandwidth relative to a higher class at
least in one link.

Figs. 14 and 15 show that the lucky receiver (member)

rate, i.e., the percentage of receivers (members) that receive
a better quality of service than that they requested, grows
as the multicast group enlarges. Fig. 14 also shows that
DIMRO lucky receiver rate grows at the decreasing of
the number of channels, i.e., the number of cumulative
rates, in the layering scheme. In fact, by reducing the num-
ber of possible cumulative rates, it becomes more likely
that receivers with different QoS requirements ask for the
5 10 15 20 25
30

35

40

45

50

55
DIMROGS Lucky Member Rate

Group Size [# of members]

Lu
ck

y
M

em
eb

er
 R

at
e

[%
]

Fig. 15. DIMRO-GS Lucky Members.
same rate and, thus, it is more likely that receivers asking
for less stringent QoS requirements can reuse resources
already exploited by receivers with more stringent QoS
requirements. In other words, by reducing the number of
channels, less receivers can obtain the desired rate, but
more receivers attain a better QoS, which implies less
losses, less retransmissions, and an increased average
throughput.

7. Conclusions and future research

Two algorithms for multicast applications in service
overlay networks were presented. The first builds virtual
source-rooted multicast trees for source-specific applica-
tions; the second constructs a virtual shared tree for
group-shared applications. Their objective is to achieve
traffic balancing on the overlay network in such a way as
to avoid traffic congestion and fluctuation in the underlay
network, which cause low performance. To address these
problems, the algorithms actively probe the underlay net-
work and compute virtual multicast trees by dynamically
selecting the least loaded available paths on the overlay
network. Our future research will focus on dynamic multi-
cast groups on overlay networks, and on the dynamic inter-
actions between overlay and underlay networks.

Acknowledgement

The authors are in debted to the anonymous reviewers
whose unselfish comments greatly improved this work.

Appendix A. Channel rate assignment algorithm

In this Appendix, we present an efficient algorithm to
exactly solve problem P, presented in Section 4.1, in poly-
nomial time. An example of the algorithm in a simplified
scenario will be given after its formal description (Figs.
16–20). The algorithm goes through two stages:

(1) We build a directed graph GðV; EÞ, where nodes of
the graph are the N different requested rates together with
an exit node nexit, i.e., V ¼ fW 1; ::;W Ng [fnexitg, thus
jVj ¼ N þ 1;

(2) We solve a maximum cost path problem from node
W1 to node nexit in the constructed graph GðV; EÞ. At this
point, all the nodes belonging to this path will be those
Fig. 16. Determining channel rates: Step 1.

Fig. 18. Determining channel rates: Step 3.

Fig. 19. Determining channel rates: Step 4.

Fig. 20. Determining channel rates: Step 5.

Fig. 17. Determining channel rates: Step 2.

D. Pompili et al. / Computer Communications 31 (2008) 489–505 503
cumulative channel rates L1; . . . ; L�K that form an optimal
solution of problem P.

Let us now assume L1 ¼ minfL1; . . . ; LK�g ¼ W 1. If
L1 > W1, since LK� > . . . > L1 > W 1 from (9), then receiv-
ers that asked for rate W1 could not subscribe any channel
without incurring in data loss. In fact, if they subscribed
channel w1 = L1 > W1, they would be overwhelmed by
arriving packets. Thus, this means that it must necessarily
be L1 = W1, as initially assumed. The proposed algorithm
to exactly solve P, proceeds into steps, hereafter described.
Step 1: Starting from node (rate) W1, a link (1, j) from
W1 to Wj ("j = 2,. . ., K* + 1) is added to the graph. Since
there are K* channels, the set of all possible values for L2 is
fW 2; . . . ; W K�þ1g, thus at least K* � 2 values
fW K�þ2; . . . ; W Ng remain for the others K* � 2 cumulative
rates L3; . . . ; LK� .

The cost c(1, j) of each link (1, j) ("j = 2, . . .,K* + 1) is
the partial value of the objective function of P, determined
by the choice L1 = W1 for all those receivers that ask for
rates from W1 to Wj�1. Thus, the cost of link (1, j) is
defined as,

cð1; jÞ ¼
Xj�1

n¼1

gn �
W 1

W n
: ð24Þ

Step i, i = 2, . . .,K* � 1: A link (i, j) from Wi to Wj

("j = i + 1, . . .,K* + i) is added to the graph. The set
fW iþ1; . . . ; W K�þig is determined by considering that at this
step, values of the cumulative rates, L1 = W1, . . .,Li = Wi,
could have already been assigned (it is only an admissible
solution, not necessarily the optimal one). In this limit case,
at least K* � i � 1 values fW K�þiþ1; . . . ; W Ng must remain
for the others K* � i � 1 values of the cumulative rate
Liþ2; . . . ; LK� .

The cost c(i, j) of the link (i, j) is defined as,

cði; jÞ ¼
Xj�1

n¼i

gn �
W i

W n
: ð25Þ

The cost c(i, j) is the partial value of the objective func-
tion of P, determined by the choice of the cumulative rate
Wi for all those receivers that ask for rates from Wi to
Wj�1.

Step i, i = K*, . . .,N � 1: A link (i, j) from Wi to Wj

("j = i + 1, . . .,N) is added to the graph. The cost c(i, j)
of link (i, j) is defined according to (25). Furthermore, a link
from node (rate) Wi to the exit node nexit is added to the
graph. In fact, at Step i, i = K*, all K* values of the cumu-
lative rates L1; . . . ; LK� could have already been assigned. If
there are no more cumulative rates, i.e., no more channels,
then the cumulative rate LK� ¼ W i is assigned to all the
receivers that ask for rates from Wi to WN.

The cost c(i,nexit) of the link (i, nexit) is defined as,

cði; nexitÞ ¼
XN

n¼i

gn �
W i

W n
: ð26Þ

Eq. (26) represents the partial value of the objective
function of P, determined by the choice of the cumula-
tive rate Wi for all the receivers that ask for rates form
Wi to WN.

Step N: Finally, only one link (N,nexit) from node (rate)
WN to the exit node nexit is added to the graph. The cost
c(N, nexit) of the link (N,nexit) is simply c(N,nexit) = gN,
which is the contribution to the objective function of the
choice LK� ¼ W N .

Example. Let us consider N = 5 different requested rates
W1 < W2 < . . . < W5 and let us suppose that only K* = 3

504 D. Pompili et al. / Computer Communications 31 (2008) 489–505
channels are available. Let us assume, for the sake of
clarity, that gn = 1, n = 1, . . ., 5.

Step 1: L1 is set to W1 and links from node W1 to nodes
W2, W3 and W4 are added to the graph (Fig. 16). There is
no link from W1 to W5 because the possible cumulative
rates are three (K* = 3) and it cannot be L2 = W5. The cost
of each link (W1,Wj) is the contribution of the choice
L2 = Wj to the objective function of P.

Step 2: Links from node W2 to nodes W3, W4, and W5

are added to the graph (Fig. 17). The cost of each link
(W2,Wj) is the contribution of the choice L3 = Wj.

Step 3: Links from node W3 to nodes W4, W5, and nexit,
are added to the graph (Fig. 18). The cost of each link (W3,
Wj) is the contribution of the choice L3 = Wj to the
objective function when L2 = W3, while the cost of the link
(W3,nexit) is the contribution of the choice L3 = W3 when
L2 = W2.

Step 4: Links from node W4 to nodes W5 and from node
W4 to nexit are added to the graph (Fig. 19). The cost of link
(W4,W5) is the contribution of the choice L3 = W5 to the
objective function when L2 = W4, while the cost of the link
(W4, nexit) is the contribution of the choice L3 = W4 to
when L2 = W2 or L2 = W3.

Step 5: Only a link from node W5 to nexit is added to the
graph (Fig. 20). The cost of the link (W5, nexit) is the
contribution of the choice L3 = W5 to the objective
function of P when L2 = W2, L2 = W3 or L2 = W4.

Cumulative channel rates L1; . . . ; LK� that form an opti-
mal solution of problem P can be found by solving a max-
imum cost path problem in the constructed graph GðV; EÞ.

Let X be the set of all possible values of the objective
function UðL1; . . . ; LK� Þ of P on the admissible region.
Let P be the set of all possible paths from node W1 to nexit

in the graph GðV; EÞ with maximum number of hops equal
to K*, and let DP be the set of the lengths of paths in the set
P, i.e., the set of the costs of paths in the set P. The graph
GðV; EÞ has been built in a way that the set DP coincides
with the set X (DP ” X). Thus, to find the optimal solution
of P, it is sufficient to find the longest path from node W1

to nexit in the graph GðV; EÞ.
Since the graph GðV; EÞ is acyclic [22], the Bellman–Ford

algorithm [14] can be used to find the longest path from
node W1 to nexit with a number of hop lower or equal to
K*. Nodes of this path but nexit represent the set of opti-
mum cumulative rates L1; . . . ; LK� , i.e., the optimal solu-
tion of P.

Computational complexity: The graph GðV; EÞ has a
number of nodes jVj ¼ N þ 1 and a number of links equal
to

jEj ¼ ðK� � 1Þ � ðN � K� � 1Þ þ
XN

i¼K�
ð1þ N � iÞ: ð27Þ

The Bellman–Ford algorithm, which dominates most of
the computing time of the algorithm, has a computational
complexity OðjVj � jEjÞ. Thus, the complexity of the pro-
posed algorithm for the exact determination of logical
channel rates is O(K* Æ N2).
References

[1] CPLEX, <http://www.cplex.com/>.
[2] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory,

Algorithms, and Applications, Prentice Hall, Englewoof Cliffs, NJ,
1993.

[3] D.G. Andersen, H. Balakrishnan, M.F. Kaashoek, R. Morris,
Resilient overlay networks, in: Proceedings of ACM Symposium on
Operating Systems Principles (SOSP), October 2001, Banff, Canada,
2001.

[4] T. Ballardie, Core Based Trees (CBT version 2) Multicast Routing,
Technical report, IETF RFC 2189, September 1997.

[5] T. Ballardie, P. Francis, J. Crowcroft, Core based trees (CBT): an
architecture for scalable inter-domain multicast routing, Computer
Communication Review 23 (Oct.) (1993) 85–95.

[6] T. Ballardie, P. Francis, J. Crowcroft, Core based trees (CBT) and
architecture for scalable inter-domain multicast routing, in: Proceed-
ings of ACM Special Interest Group on Data Communications
(SIGCOMM), September 1993, San Francisco, USA, 1993.

[7] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, S. Khuller,
Construction of an efficient overlay multicast infrastructure for
realtime applications, in: Proceedings of IEEE Conference on
Computer Communications (INFOCOM), March 2003, vol. 2, San
Francisco, CA, USA, 2003, pp. 1521–1531.

[8] S. Baset, H. Schulzrinne, An analysis of the skype peer-to-peer
internet telephony protocol, in: Proceedings of IEEE Conference on
Computer Communications (INFOCOM), April 2006, Barcelona,
Spain, 2006.

[9] S. Bhattacharyya, J. Kurose, D. Towsley, Efficient multicast flow
control using multiple multicast groups, Technical report, CMPSCI,
TR 97-15, March 1997.

[10] Y. Birk and D. Crupnicoff, A multicast transmission schedule for
scalable multi-rate distribution of bulk data using non-scalable
erasure-correcting codes, in: Proceedings of IEEE Conference on
Computer Communications (INFOCOM), July 2003, San Francisco,
USA, 2003.

[11] K. Calvert, M. Doar, E. Zegura, Modeling Internet topology, IEEE
Communications Magazine 35 (6) (1997) 160–163.

[12] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, A.
Singh, Splitstream: high-bandwidth multicast in cooperative environ-
ments, in: Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), October 2003, Bolton Landing, NY, USA, 2003.

[13] M. Castro, P. Druschel, A. Kermarrec, A. Rowstron, SCRIBE: a
large-scale and decentralized application-level multicast infrastruc-
ture, IEEE Journal on Selected Areas in Communications 20 (8)
(2002) 1489–1499.

[14] C. Cheng, R. Riley, S.P.R. Kumar, J.J. Garcia-Luna-Aceves, A loop-
free Bellman–Ford Routing protocol without bouncing effect, in:
Proceedings of ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), September 1989,
Oakland, California, USA, 1989, pp. 224–237.

[15] A. Claus, N. Maculan, Une Nouvelle Formulation du Probleme de
Steiner sur un Graphe. Technical report, Centre de Recerche sur les
Transports, Universite de Montreal, 1983.

[16] Z. Duan, Z. Zhang, Y. Hou, Service overlay networks: SLAs, QoS,
and bandwidth provisioning, IEEE/ACM Transactions on Network-
ing 11 (6) (2003) 870–883.

[17] J. Fan and M. Ammar, Dynamic topology configuration in service
overlay networks: a study of reconfiguration policies, in: Proceedings
of IEEE Conference on Computer Communications (INFOCOM),
April 2006, Barcelona, Spain, 2006.

[18] N. Feamster, D. Andersen, H. Balakrishnan, F. Kaashoek, Measur-
ing the effects of internet path faults on reactive routing, in:
Proceedings of ACM International Conference on Measurement

http://www.cplex.com/

D. Pompili et al. / Computer Communications 31 (2008) 489–505 505
and Modeling of Computer Systems (SIGMETRICS), June 2003, San
Diego, CA, USA, 2003.

[19] R. Fourer, D.M. Gay, B.W. Kernighan, AMPL: a modeling language
for mathematical programming, Duxbury Press, Cole Publishing Co.,
2002.

[20] P.G. Franciosa, D. Frigioni, R. Giaccio, Semi-dynamic shortest paths
and breadth-first search on digraphs, in: Proceedings of Symposium
on Theoretical Aspects of Computer Science, Lubeck, Germany,
February/March 1997, pp. 33–46.

[21] M.R. Garey, D.S. Johnson, Computer and intractability: a guide to
the theory of NP-completeness, W.H. Freeman and Co., San
Francisco, CA, 1979.

[22] J.L. Gross, J. Yellen, Handbook of graph theory, Discrete
Mathematics and Its Applications, vol. 25, CRC Press, Boca
Raton, 2003.

[23] X. Gu, K. Nahrstedt, R. Chang, C. Ward, QoS-assured service
composition in managed service overlay networks, in: Proceed-
ings IEEE International Conference on Distributed Computing
Systems (ICDCS), May 2003, Providence, Rhode Island, USA,
2003.

[24] T. Jiang, M.H. Ammar, E.W. Zegura, Inter-receiver fairness: A novel
performance measure for multicast ABR sessions, in: Proceedings of
ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), Madison, Wisconsin, USA,
1998.

[25] D. Kostic, A. Rodriguez, J. Albrecht, A. Vahdat, Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh, in: Pro-
ceedings of ACM Symposium on Operating Systems Principles
(SOSP), October 2003, Bolton Landing, NY, USA, 2003.

[26] L. Lao, J.-H. Cui, M. Gerla, TOMA: a viable solution for largescale
multicast service support, in: Proceedings of IFIP International
Conference of Networking, May 2005, Waterloo, Ontario, Canada,
2005, pp. 906–917.

[27] Z. Li, P. Mohapatra, Qron: Qos-aware routing in overlay networks,
IEEE Journal on Selected Areas in Communications (JSAC) 22 (1)
(2004) 29–40.

[28] D. Lichtenstein, Planar formuale and their use, SIAM Journal on
Computing 11 (2) (1982) 329–343.

[29] C.P. Low, N. Wang, On finding feasible solutions to group multicast
routing problem, IEICE Transactions on Communications E85-B (1)
(2002) 268–277.

[30] A. Nakao, L. Peterson, A. Bavier, A routing underlay for overlay
networks, in: Proceedings of ACM International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS),
June 2003, San Diego, CA, USA, 2003.

[31] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, A. Mohr,
Chainsaw: eliminating trees from overlay multicast, in: Proceedings of
International Workshop on Peer-to-Peer Systems (IPTPS), February
2005, Ithaca, NY, USA, Feb. 2005.

[32] P. Paul and S. Raghavan, Survey of multicast routing algorithms and
protocols, in: Proceedings of the International Conference on
Computer Communication (ICCC), August 2002, Bandra, Mumbai,
India, 2002.

[33] L.H. Sahasrabuddhe, B. Mukherjee, Multicast routing algorithms
and protocols: a tutorial, IEEE Network 14 (1) (2000) 90–102.

[34] S.Y. Shi, J.S. Turner, Routing in Overlay Multicast Networks, in:
Proceedings of IEEE Conference on Computer Communications
(INFOCOM), June 2002, New York, NY, USA, 2002.

[35] S.Y. Shi, J.S. Turner, Routing in Overlay Multicast Networks, in:
Proceedings of IEEE Conference on Computer Communications
(INFOCOM), June 2002, vol. 3, New York, NY, USA, 2002. pp.
1200–1208.

[36] H. Takahashi, A. Matsuyama, An approximate solution for the
steiner problem in graphs, Mathematica Japonica 6 (1980) 573–577.
[37] S. Vieira, J. Liebeherr, Topology design for service overlay networks
with bandwidth guarantees, in: Proceedings of IEEE International
Workshop on Quality of Service (IWQoS), June 2004, Montreal,
Canada, 2004, pp. 211–220.

[38] N. Wang, C.P. Low, On finding feasible solutions to group multicast
routing problem, in: Proceedings of IFIP International Conference of
Networking, May 2000, Paris, France, 2000.

[39] B.M. Waxman, Routing of multipoint connections, IEEE Journal on
Selected Areas in Communications 6 (9) (1988) 1617–1622.

[40] R.T. Wong, A dual ascent approach for steiner tree problems on a
directed graph, Mathematical Programming 28 (1984) 271–287.

[41] H. Zhang, J. Kurose, D. Towsley, Can an overlay compensate
for a careless underlay? in: Proceedings of IEEE Conference on
Computer Communications (INFOCOM), April 2006, Barcelona,
Spain, 2006.

[42] Y. Zhu, C. Dovrolis, M. Ammar, Dynamic overlay routing based on
available bandwidth estimation: a simulation study, Computer
Networks (Elsevier) 50 (6) (2006) 742–762.

Dario Pompili graduated in Telecommunications
Engineering (summa cum laude) from the Uni-
versity of Rome ‘La Sapienza’, Italy, in 2001. In
2004, he earned from the same university the
Ph.D. Degree in System Engineering. In 2003, he
worked on sensor networks at the Broadband
and Wireless Networking Laboratory, Georgia
Institute of Technology, Atlanta, as a Visiting
Researcher. In 2007, he earned the Ph.D. Degree
in Electrical and Computer Engineering at the
Georgia Institute of Technology under the guid-

ance of Dr. I.F. Akyildiz. Starting August 2007, he is an Assistant Pro-
fessor in the Electrical and Computer Engineering Department at Rutgers,

the State University of New Jersey. His main research interests are in
wireless ad hoc and sensor networks, underwater acoustic sensor net-
works, and overlay networks.

Caterina Scoglio graduated in Electrical Engi-
neering (summa cum laude) from the University
of Rome ‘La Sapienza’, Italy, in 1987. In 1988,
she received a Post-graduate Degree in Mathe-
matical Theory and Methods for System Analysis
and Control from the same university. From 1987
to 2000, she was with Fondazione Ugo Bordoni,
Rome, as a Research Scientist. From 2000 to
2005, she was with the Broadband and Wireless
Networking Laboratory, Georgia Institute of
Technology, as a Research Engineer. Currently,

she is an Associate Professor in the Electrical and Computer Engineering
Department at Kansas State University. Her research interests include

optimal design and management of overlay networks.

Luca Lopez graduated in Electronic Engineering
(summa cum laude) from the University of Rome
‘La Sapienza’, Italy, in 2003, with a thesis titled
‘‘Resource Optimization for Internet Multicast
Applications’’. His main research interests
include multicast communications, QoS in over-
lay networks, and digital signal processing.

	Multicast algorithms in service overlay networks
	Introduction
	Background on multicasting
	Related work
	DIMRO: Differentiated service Multicast algorithm for Internet Resource Optimization
	Optimal channel rate assignment problem
	DIMRO in non-QoS-aware overlay networks
	DIMRO in QoS-aware overlay networks

	DIMRO-GS: Differentiated service Multicast algorithm for Internet Resource Optimization in Group-shared Applications
	DIMRO-GS in non-QoS-aware overlay networks
	DIMRO-GS in QoS-aware overlay networks

	Simulation results
	Random network model
	DIMRO performance evaluation
	DIMRO-GS performance evaluation
	DIMRO and DIMRO-GS performance evaluation in differentiated service overlay networks

	Conclusions and future research
	Acknowledgement
	Channel rate assignment algorithm
	References

