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Localization underwater has been known to be challenging due to the limited accessibility
of the Global Positioning System (GPS) to obtain absolute positions. This becomes more
severe in the under-ice environment since the ocean surface is covered with ice, making
it more difficult to access GPS or to deploy localization infrastructure. In this paper, a novel
solution that minimizes localization uncertainty and communication overhead of under-
ice Autonomous Underwater Vehicles (AUVs) is proposed. Existing underwater localization
solutions generally rely on reference nodes at ocean surface or on localization infrastruc-
ture to calculate positions, and they are not able to estimate the localization uncertainty,
which may lead to the increase of localization error. In contrast, using the notion of exter-
nal uncertainty (i.e., the position uncertainty as seen by others), our solution can character-
ize an AUV’s position with a probability model. This model is further used to estimate the
uncertainty associated with our proposed localization techniques. Based on this uncer-
tainty estimate, we further propose algorithms to minimize localization uncertainty and
communication overhead. Our solution is emulated and compared against existing solu-
tions, showing improved performance.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

UnderWater Acoustic Sensor Networks (UW-ASNs) [2]
consist of a number of sensors and vehicles that interact
to collect data and perform tasks in a collaborative manner
underwater. They have been deployed to carry out collab-
orative monitoring tasks including oceanographic data
collection, climate monitoring, disaster prevention, and
navigation. Autonomous Underwater Vehicles (AUVs) are
widely believed to be revolutionizing oceanography and
are enabling research in environments that have typically
been impossible or difficult to reach. For example, AUVs
have been used for continuous measurement of fresh
water exiting the Arctic through the Canadian Arctic Archi-
pelago and Davis Strait in order to study the impact of cli-
mate change to the circulation of the world’s oceans. The
ability to do so under ice is important so that, for example,
scientists can measure how much fresh water flows
through the strait – and at what times of year – so they
have a baseline for comparison in coming years.

For these missions, position information is of vital
importance in mobile underwater sensor networks, as
the data collected has to be associated with appropriate
location in order to be spatially reconstructed onshore.
Even though AUVs can surface periodically (e.g., every
few hours) to locate themselves using Global Positioning
System (GPS) – which does not work underwater – over
time, inaccuracies in models for deriving position esti-
mates, self-localization errors, and drifting due to ocean
currents will significantly increase the uncertainty in posi-
tion of underwater vehicle, which affects the performance
of communication solutions such as [3]. Moreover, in
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extreme environments such as under ice, surfacing to get a
GPS update is hardly possible and, therefore, position
information is highly uncertain. In such environments,
relying on standard navigation techniques such as Long
Baseline (LBL) navigation is difficult as the use of static
LBL beacons typically limits the operation range to about
10 km [4] and requires great deployment efforts before
operation, especially in deep water (more than 100 m
deep).

As AUVs are becoming more and more capable and also
affordable, deployment of multiple AUVs to finish one
mission becomes a widely-adopted option. This not only
enables new types of missions through cooperation but
also allows individual AUVs of the team to benefit from
information obtained from other AUVs. Existing localiza-
tion schemes underwater generally rely on the deployment
of transponders or nodes with underwater communication
capabilities as reference points, which requires either
much deployment effort or much communication over-
head (Note that in this work, reference nodes are the nodes
whose positions are used by another node for localization).
Moreover, these schemes are not able to estimate the
uncertainty associated with the calculated position, which
is high in under-ice environments, and thus are not able to
minimize position uncertainty.

To address this problem, we propose a solution that
uses only a subset of AUVs without relying on localization
infrastructure. Specifically, a position uncertainty model in
[5] is introduced to characterize an AUV’s position. This
model is extended to estimate the uncertainty associated
with the standard distance-based localization technique,
resulting in the distance-based localization with uncer-
tainty estimate (DISLU). We further propose a Doppler-
based technique with uncertainty estimation capability,
which is called Doppler-based localization with uncertain-
ty estimate (DOPLU). DISLU relies on packets (i.e., commu-
nication overhead) to measure the inter-vehicle distances
(i.e., ranging), which, in conjunction with positions of
reference nodes (in general other AUVs), are utilized to
estimate the position. On the other hand, DOPLU, which
measures Doppler shifts from ongoing communications
and then uses these measurements to calculate velocities
for localization, removes the need for ranging packets. As
DOPLU only relies on relative measurements, it may not
be able to fix displacement errors introduced by the rota-
tion or position translation of the AUV group. In this case,
DISLU is executed to bound such localization errors. Con-
sidering these tradeoffs, using the uncertainty model, the
localization error and communication overhead of DISLU
and DOPLU can be jointly considered and algorithms are
devised to minimize the localization uncertainty and com-
munication overhead while satisfying localization error
requirement.

Our solution offers a way to estimate the degree of
uncertainty associated with a localization technique and
based on this estimation it further minimizes both position
uncertainty and communication overhead. The contribu-
tions of this work include: (1) a probability model to esti-
mate the position uncertainty associated with localization
techniques; (2) an algorithm to minimize localization
uncertainty by selecting an appropriate subset of reference
nodes; (3) an algorithm to optimize the localization inter-
val in order to further minimize the localization overhead;
and (4) a Doppler-based localization technique that can ex-
ploit ongoing communications for localization.

Compared to the previous shorter version [1], we added
a section to discuss the relationship between these two no-
tions and then presented applications and research areas
where the proposed notion of external uncertainty can be
applied to improve performance. Moreover, in the previous
version, the internal uncertainty transmitted to the neigh-
bor vehicle was directly used as the external uncertainty
without considering the propagation of position uncer-
tainty after delay and transmission loss of the uncertainty
information. In this manuscript, we proposed a novel ap-
proach to estimate the external uncertainty based on the
transmitted internal uncertainty. At last, more simulations
are added to evaluate the accuracy of our proposed algo-
rithms to estimate the external uncertainty.

The remainder of this paper is organized as follows. In
Section 2, we review the related work for localization algo-
rithms in UW-ASNs. We present the motivation and back-
ground in Section 3 and propose our solution in Section 4;
in Section 5, performance evaluation and analysis are car-
ried out, while conclusions are discussed in Section 6.
2. Related work

Localization is essential for underwater vehicle naviga-
tion and UW-ASNs, where many localization solutions, as
summarized in [4,6], have been proposed. Due to space
limitation, we just review the work that is most related,
i.e., localization in UW-ASNs using AUVs.

Short Baseline (SBL) and Long Baseline (LBL) systems [4]
are standard ways to localize vehicles underwater, where
external transponder arrays are employed to aid localiza-
tion. In SBL systems, position estimate is determined by
measuring the vehicle’s distance from three or more tran-
sponders that are, for example, lowered over the side of the
surface vessel. LBL systems are similar to SBL, with the dif-
ference that an array of transponders is tethered on the
ocean bed with fixed locations.

In [7], a localization scheme called AUV Aided Localiza-
tion (AAL) is proposed, where position estimation is done
using a single AUV. In AAL, an AUV navigates a predefined
trajectory, broadcasts its position upon a node’s request,
and fixes its own position at the surface. Each node esti-
mates the distances to the AUV while the AUV is at differ-
ent locations, using the Round-Trip Time (RTT) between
itself and the AUV. Algorithms such as triangulation or
bounding box can then be used for position estimate. An-
other localization solution called Dive-N-Rise Localization
(DNRL) is proposed for both static and mobile networks
in [8]. DNRL is similar to AAL, with the difference that
ocean currents are considered and time synchronization
is required between nodes.

In [9], an online algorithm for cooperative localization
of submerged AUVs is designed, implemented, and evalu-
ated through experiments. This algorithm relies on a single
surface vehicle called Communication and Navigation Aid
(CNA) for autonomous navigation. Using the CNA’s GPS
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positions and basic onboard measurements including
velocity, heading and depth, this algorithms can use filter-
ing techniques such as Extended Kalman Filter (EKF) to
bound the error and uncertainty of the on-board position
estimates of a low-cost AUV.

Among existing underwater localization techniques
(which are generally not suitable for under-ice environ-
ments), relatively few under-ice localization techniques
have been proposed. Despite these efforts, the technology
remains expensive and out of reach for researchers. Cur-
rent techniques employed in the under-ice environment
include combinations of either dead-reckoning using
inertial measurements, sea-floor acoustic transponder net-
works such as SBL or LBL, and/or a Doppler Velocity Log
(DVL) that can be either seafloor or ice relative [4]. These
current approaches require external hardware, are cost
prohibitive, and suffer from error propagation. For accurate
dead reckoning, highly accurate sensors are required be-
cause magnetic navigation systems are subject to local
magnetic field variations and gyros are subject to drift over
time. Quality inertial navigation sensors often cost more
than $10,000 [4]. In contrast, our solution is much more
economical as it does not require these expensive sensors.

Two solutions for underwater collaborative localization
using a probability framework are proposed in [10,11],
where a sum-product algorithm and a Markov process that
are based on the so-called factor graph are used to model
the joint distribution of multiple nodes. Both solutions
require the global information of the nodes that are
involved in localization, which leads to high computation
complexity and communication overhead. Our solution
offers another probability framework that leverages the
self-estimated uncertainty distribution for estimation of
other nodes. Therefore, global information is not required,
resulting in reduced computation complexity and commu-
nication overhead.
3. Motivation and background

In UW-ASNs, inaccuracies in models for position esti-
mation, self-localization errors, and drifting due to ocean
currents will significantly increase the uncertainty in the
position of an underwater vehicle. Hence, using a determin-
istic point is not enough to characterize the position of an
AUV. Furthermore, such a deterministic approach under-
water may lead to problems such as routing errors in in-
ter-vehicle communications, vehicle collisions, loss of
synchronization, mission failures. In order to address the
problems due to position uncertainty, we introduce a prob-
ability model to characterize a node’s position. In many
applications such as geographic routing, AUVs need to esti-
mate the positions of themselves and other AUVs’. There-
fore, depending on the view of the different nodes, two
forms of position uncertainty are defined, i.e., internal
and external uncertainty. Internal uncertainty is the position
uncertainty associated with a particular entity/node (such
as an AUV) as seen by itself, while external uncertainty is the
position uncertainty as seen by others, respectively.

These two notions introduce a shift in AUV localization:
from a deterministic to a probabilistic view. This shift can
then be leveraged to improve the performance of solutions
to problems in a variety of fields. Many approaches such as
those using Kalman Filter (KF) [12] have been proposed to
estimate the internal uncertainty assuming that the vari-
ables to be estimated have linear relationships between
each other and that noise is additive and Gaussian. While
simple and quite robust, KF is not optimal when the linear-
ity assumption between variables does not hold. On the
other hand, approaches using non-linear filters such as
the extended or unscented KF attempt to minimize the
mean squared errors in estimates by jointly considering
the navigation location and the sensed states or features
such as underwater terrain features, which are non-trivial,
especially in an unstructured underwater environment.

Let us denote the internal uncertainty, a 3D region asso-
ciated with any node j 2 N where N is the set of network
nodes, as U jj, and the external uncertainties, 3D regions
associated with j as seen by i; k 2 N , as U ij and Ukj, respec-
tively (i – j – k). In general, U jj; U ij, and Ukj are different
from each other; also, due to information asymmetry, U ij

is in general different from U ji. External uncertainties
may be derived from the broadcast/propagated internal-
uncertainty estimates (e.g., using one-hop or multi-hop
neighbor discovery mechanisms) and, hence, will be affected
by end-to-end (e2e) network latency and information loss.

We present here applications and research areas where
the proposed notion of external uncertainty can be applied
to improve performance.

Communication protocols for UW-ASNs: In UW-ASNs, the
external uncertainty can be used to improve the perfor-
mance of networking solutions. For example, as shown in
[5], a solution that considers external uncertainty can be
used for Delay-Tolerant Networks (DTNs). As shown in
Fig. 1(a) (where the single dotted arrow denotes the pre-
dictable trajectory and the double dotted arrow denotes
the estimated data forwarding path), by leveraging the
predictability of AUVs’ trajectories, delaying packet trans-
missions in such a way as to wait for the optimal network
topology (thus trading e2e delay for throughput and/or en-
ergy consumption) can minimize communication energy
consumption for delay-tolerant traffic. Also, by optimizing
statistically the transmission output power, routing errors
can be reduced, which decreases energy/bandwidth
utilization.

Underwater robotics: In underwater robotics, a team of
AUVs can collaborate to explore a 3D region and take mea-
surements in space and time. To derive the spatio-tempo-
ral correlation of the measurements, these AUVs need to
keep a geometric formation and steer through the region
(Fig. 1(b)). They also need to keep a distance between each
other in order to avoid vehicle collisions. In [13], a solution
is proposed to minimize the time to form the geometric
formation while avoiding collisions. However, that solu-
tion assumes the gliders to have correct location informa-
tion, which is a strong requirement in the underwater
environment. The solution can be made more robust
against ocean currents and acoustic channel impairments
by exploiting the concept of external uncertainty, e.g., a
control algorithm can be designed to minimize the proba-
bility that two AUVs are within the collision region. This
concept can also be used to adapt the sampling strategy



Fig. 1. Research areas that can benefit from the notion of external
uncertainty (broken-line circles denote external uncertainty and broken-
dotted-line circles denote internal uncertainty; note that we use circles
instead of 3D shapes for uncertainty regions just for the sake of
visualization simplicity).
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based on the variation of the measurements. For example,
for real-time ocean forecasting, a team of AUVs can be de-
ployed to take spatial and temporal measurements. To
maximize the forecasting performance, the geometry for-
mation and inter-vehicle distance can be dynamically ad-
justed to measure a dynamically changing region. By
using the external uncertainty notion, we can estimate
the probability distribution of the measurements (since
location of the measurement is the same as the AUV) and
then design an optimal strategy to minimize the observa-
tion uncertainty for accurate forecasting.

Underwater localization: To perform self-localization,
AUVs may need to rely on other anchor nodes (e.g., AUVs)
whose positions may not be accurate (Fig. 1(c)). Localiza-
tion errors, however, may increase if an AUV relies on
anchors with large position uncertainty. The external-
uncertainty notion can be used to decrease errors and
computation complexity, e.g., by selecting the optimal sub-
set of anchors (with small external uncertainty) so to min-
imize its new internal uncertainty.

Task allocation: The proposed notion of uncertainty can
also be applied in task allocation, whose objective is to
choose a subset of vehicles to accomplish reliably a mis-
sion with specific requirements, e.g., only part of a team
of AUVs can be selected to conduct a critical mission while
trying to maximize the remaining energy after the mission
or to minimize the time to complete the mission [14]. By
using the external-uncertainty notion, a team of AUVs that
are ‘‘closer’’ to the target can be selected, which may lead
probabilistically to less time and/or energy to complete
the mission.

Data processing and visualization: Once the measure-
ments are received by the onshore station, oceanographers
need to visualize and analyze sensor data for a multitude of
ocean science studies. The external-uncertainty notion can
improve the quality of 3D data reconstruction because it
shows the vehicle deviation from the original mission path.

In this work, we illustrate that these two notions can
be used to improve the performance in underwater
localization.
4. Proposed solution

With the notion of external uncertainty, we can model
the uncertainty associated with localization techniques.
Based on this uncertainty, optimization problems are for-
mulated to minimize localization uncertainty and commu-
nication overhead. In this section, we first show how
external uncertainty can be used to estimate the uncer-
tainty with the standard distance-based localization
technique (i.e., DISLU). Then we propose a novel Doppler-
based localization technique DOPLU that jointly estimates
localization uncertainty. DISLU requires ranging packets
to measure the distances for position calculation, which
introduces communication overhead. This weakness in
DISLU can be offset by DOPLU, which exploits ongoing in-
ter-vehicle communications to avoid the need for ranging
packets. Such an ‘opportunistic’ approach (i.e., DOPLU)
does not guarantee correct absolute locations (as Doppler
shifts only characterize relative position change) so the
team of AUVs needs to go back to DISLU to correct the loca-
tions when the error is too large. Based on this idea, we
propose algorithms to solve two optimization problems,
one for minimization of localization uncertainty and the
other for minimization of communication overhead.

The communication protocol for our solution is pre-
sented in Fig. 2. Each AUV first runs DISLU using the dis-
tances measured from the round-trip time. Then, DOPLU
is run using Doppler-shift information extracted from in-
ter-vehicle packets. By overhearing the ongoing packets
from the reference nodes, AUV i estimates the Doppler
shifts and then extracts the relative velocity, from which
the AUVs calculate their absolute velocities. DISLU is run
to fix the localization error introduced by DOPLU after Tp,
which is the time after the last DISLU is started (Ts is the
duration for which enough Doppler shifts are collected to
estimate the position).



Fig. 2. Overview of the proposed approach (paired arrows represent the
start and the end of one packet).

3844 B. Chen, D. Pompili / Computer Networks 57 (2013) 3840–3854
Both DISLU and DOPLU use the external uncertainty and
corresponding probability distribution function (pdf) to
estimate the uncertainty resulted from the localization
technique, i.e., the internal uncertainty and pdf of the
AUV running the localization algorithm. Then this internal
uncertainty information is broadcast for other AUVs to
estimate external uncertainties. Our previous work in [5]
provided a statistical solution to estimate the internal
uncertainty, while internal uncertainty is used as the
external uncertainty (which is inaccurate).

In Section 4.1, we briefly review the formula to estimate
internal uncertainty of underwater gliders, and then we
propose an approach to estimate their external uncer-
tainty. In Section 4.2, we present our DISLU algorithm, fol-
lowed by the DOPLU algorithm in Section 4.3. In the end of
this section, we further present an optimization algorithm
to minimize the communication overhead.
4.1. Estimation of internal and external uncertainty

After receiving j’s internal uncertainty U jj, AUV i can up-
date the estimate of j’s external uncertainty U ij. AUV j’s
internal uncertainty can be estimated using statistical
methods such as that presented in [5], where an underwa-
ter glider’s internal uncertainty can be described by
parameters (P;�t;~v;HU ;HL;R). Here we assume glider j’s
estimated coordinates, Pn = (xn,yn,zn) at sampling times tn

(n = 1, . . . , N), as shown in [5], its trajectory segment can
be described as PðtÞ ¼ P þ~vðt � �tÞ, where P ¼ ð�x; �y;�zÞ
¼ 1

N

PN
n¼1ðxn; yn; znÞ and

~v ¼ kcP1
cPN

���!
k

kða�; b�; c�Þk � ðtN � t1Þ
� ða�; b�; c�Þ:

Here, [a⁄,b⁄,c⁄]T is the singular vector of N � 3 matrix

A ¼ ½½x1 � �x; . . . ; xN � �x�T ; ½y1 � �y; . . . ; yN � �y�T ; ½z1 � �z; . . . ; zN � �z�T �

corresponding to its largest absolute singular value,
�t ¼ 1

N

PN
n¼1tn is the average of the sampling times, and bPi

is the projection of point Pi on the line segment. The inter-
nal-uncertainty region of j is estimated as a cylindrical re-
gion [5] U jj described by its radius R and its height
HU � HL, where HU and HL – in general different – are the
signed distances of the cylinder’s top and bottom surface
(i.e., the surface ahead and behind in the trajectory
direction, respectively) to glider j’s expected location on
the trajectory. HU, HL and R can be calculated using Pn

(n = 1, . . . , N) (see [5] for more details).
Due to packet delays and losses in the network, j’s

external-uncertainty regions as seen by single- and mul-
ti-hop neighbors are delayed versions of j’s own internal
uncertainty. Hence, when using multi-hop neighbor discov-
ery schemes, the internal uncertainty U jj provides a lower
bound for all the external uncertainties associated with
that node, U ij; 8i 2 N . Consequently, we derive U ij based
on the received U jj.

We use Unscented Kalman Filter (UKF) to predict how
the internal uncertainty ‘propagates’ through the net-
work. This is done in two steps detailed below: (1) Region
Prediction – this is to predict the current position of an
AUV assuming that its previous location is at a point in
the internal-uncertainty region; then, the external-uncer-
tainty region is obtained by taking the set containing
these predicted positions; and (2) Distribution Estimation
– this is to calculate the probability density function
(pdf) of the current position by integrating the internal-
uncertainty pdf over points with the same predicted
position.

(1) Region Prediction: AUV i first needs to predict j’s po-
sition assuming j is located at a point in U jj and then con-
siders the union of these predicted points. The movement
model of j can be described using the following nonlinear
dynamical system. The equivalent discrete-time dynamic
equation can be derived as in [15] by means of the state-
space method using iterations. AUV i estimates the state
from step q = 1 whenever U jj is received and q is incre-
mented until a new U jj is received (q is reset to 1 upon
receiving this information). Hence,

sq
j ¼ Fjs

q�1
j þ o sq�1

j

� �
þ Guq�1

j þ Bwq�1
j ð1Þ

represents the state-transition equation for the system
describing the motion of AUV j between steps q � 1 and
q. In this equation,

sq
j ¼ xq

j ; y
q
j ; z

q
j ; _xq

j ; _yq
j ; _zq

j ;v
oc
j;x; voc

j;y;voc
j;z

h iT

represents 3D position xq
j ; y

q
j ; z

q
j

� �
, velocity _xq

j ; _yq
j ; _zq

j

� �
, and

ocean-current velocity voc
j;x;voc

j;y;voc
j;z

� �
of AUV j at step

q;o sq�1
j

� �
is the ocean-current prediction function (which

is generally nonlinear), uq�1
j ¼ uq�1;x

j ;uq�1;y
j ;uq�1;z

j

h iT
is the

control input (such as position displacement due to accel-
eration and turning driven by propeller) for t 2 [(q � 1)T,

qT), and wq�1
j ¼ wq�1;x

j ;wq�1;y
j ;wq�1;z

j ;wq�1;x
oc;j ;wq�1;y

oc;j ;wq�1;z
oc;j

h iT

represents discrete random acceleration caused by non-
ideal noise in the control input and/or the variation in

ocean current speed. Note that o sq�1
j

� �
can be predicted

using ocean-current models or data from real-time on-
shore ocean observing systems; also, AUVs are spaced
apart so currents affecting different AUVs are generally
different.

In (1), Fj, G, and B are matrices to adjust the state sq
j

according to the previous state, control input, and random
acceleration noise, respectively, and are defined as
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Fj ¼
I3 T 0jI3 T 0jI3

0 I3 0
0 0 0

264
375; G ¼

0
I3

0

264
375; B ¼

0 0
I3 0
0 I3

264
375;
where I3 is the 3 � 3 identity matrix, T 0j is the difference
between the current time and the last time when U jj was
estimated or the last update time that UKF was run, i.e.,
T 0j ¼ tnow � tU jj

if i receives j’s updated internal uncer-
tainty after the last UKF update, whereas T 0j ¼ T if i does
not receive j’s update message, where tU jj

is the time
when U jj is estimated by j and T is the UKF update inter-
val. Note that, when used as superscript, T indicates
matrix transpose; otherwise, it represents the time
interval.

The variable wq�1
j represents 3D samples of discrete

time white Gaussian noise; hence, wq�1
j � N ð0;Q Þ, where

Q P 0 is the covariance matrix of the process. The random
acceleration is also assumed to be independent on the
three axes. Here we assume that an AUV can measure
the ocean-current velocity using sensors such as Acoustic
Doppler Current Profiler (ADCP), which are, however,
expensive; for AUVs without ADCP, we can force the state
for ocean current to be zero, where the model reduces to a
linear KF and the effect of ocean current should be treated
as noise in wq

j .
Using (1), AUV j’s external uncertainty can then be esti-

mated using Unscented Kalman Filter [16]. That is, by tak-
ing one point in U jj as j’s original position to calculate j’s
current position, and then take the union of all the calcu-
lated positions, which is the current external uncertainty.

(2) Distribution Estimation: Let p 2 Uq
ij, assume p is pre-

dicted from point p0 at step q � 1, i.e., p ¼ hUKFðqT;p0;
ðq� 1ÞTÞ; p0 2 Uq�1

ij . The pdf gq
ijðpÞ of the external uncer-

tainty Uq
ij at step q can be derived from the pdf gq�1

ij ðpÞ of
Uq�1

ij as
gq
ijðpÞ ¼

Z
gij p ¼ hUKFðqT;p0; ðq� 1ÞTÞjp0 2 Uq�1

ij

� �
gq�1

ij ðp
0Þdp0:
Here gij p ¼ hUKFðqT;p0; ðq� 1ÞTÞjp0 2 Uq�1
ij

� �
is the condi-

tional pdf, i.e., given the position p0 at time (q � 1)T, the
pdf of p at time qT; and gq�1

ij ðp0Þ is the pdf of the AUV posi-
tion at time (q � 1)T.

With the help of UKF and the probability theory, we
can derive the external uncertainty and its pdf. Note that
the initial pdf g0

ijðpÞ is the t-distribution on U jj (i.e., U0
jj) re-

ceived from j. To reduce the complexity, we convert an
uncertainty region (internal or external) into its discrete
counterparts, i.e., we divide an uncertainty region into a
finite number of equal-size small regions. When the num-
ber of small regions is sufficiently large, the UKF filtering
on each small region can be approximated by the UKF fil-
tering on a point – e.g., the centroid – in this small region.
Hence, the predicted external-uncertainty region can be
approximated as the region contained in the hull of these
predicted points. The pdf functions are also approximated
by the probability mass functions on discrete points,
which simplifies the pdf estimation after UKF filtering.
4.2. Distance-based Localization with Uncertainty Estimate
(DISLU)

We present here the DISLU technique, which is based
on the following idea: to estimate its own position, vehicle
i needs (1) to estimate the distances between itself and its
reference vehicles, and (2) to estimate its own position
based on these distances.

DISLU relies on the round-trip time TRTT to measure the
inter-vehicle distance. By extracting the one-way propaga-
tion time, i is able to calculate the inter-vehicle distance.
That is, the distance between transmitter i and receiver j is

dij ¼ c � TRTT � TðTXÞ
i � TðTXÞ

j � T ðholdÞ
j

� �
=2;

where TðTXÞ
i and TðTXÞ

j are the duration to transmit the pack-
et at i and the duration to transmit acknowledgement at j
(i.e., transmission delays), T ðholdÞ

j is the holdoff time of j to
avoid collisions. To reduce the transmission time, we can
use the short ping packets (e.g., the mini-packet provided
by WHOI modem). Once j receives the ping packet, it starts
a hold-off timer, TðholdÞ

j , which is a uniformly distributed
random variable in 0;2Tmean

hold

� �
where Tmean

hold is given by,

Tmean
hold ¼ 1� dij

R

� �
sþ

/ij

c
; ð2Þ

where dij is the distance from i to j, s is the estimated trans-
mission time for the current packet, c = 1500 m/s is the
propagation speed of acoustic waves, R is the transmission
radius of the underwater modem, and /ij = max{0,R � dij}.
The first term in (2) gives less time to the neighbor that
is closer to i, and the second term is the extra delay that
a node should wait so that all the nodes receive the packet.
This gives fairness by providing synchronization in starting
the hold-off timers of all the nodes receiving the data pack-
et. T ðholdÞ

j is then embedded in the acknowledge packet for
i’s information.

After the calculation of dij’s, i estimates its own position
as the point with the least mean squared error to the refer-
ence nodes. Then, i estimates its internal uncertainty re-
gion using conditional probability and the distribution of
the reference nodes within their external-uncertainty
regions.

Given the set of i’s neighbors N i, the external uncer-
tainty regions U ij, the distances dij, and the pdf of j within
region U ij; 8j 2 N i; i can estimate the pdf of being at gener-
ic point p as

gðPi ¼ pÞ ¼
Z

pj2U ij ;j2N i

g Pi ¼ p;
\

j2N i

Pj ¼ pj

 !

¼
Z

pj2U ij ;j2N i

gðPi ¼ pj
\

j2N i

Pj ¼ pjÞ � g
\

j2N i

Pj ¼ pj

 !" #
:

ð3Þ

Here g(Pi = p) is the pdf of the position of i at point p, g(j)
denotes conditional probability density function (condi-
tional pdf). In our solution, p is calculated as the point that
has the minimum squared error, i.e., p 2 Si, where
Si � fq ¼ arg min

P
j2N i
kdðp; pjÞ � dijk2g (that is, U ii ¼ Si).

Here, d(p,pj) is the distance between point p and pj. Note
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that Si may have more than one element due to the Euclid-
ean norm (e.g., there are two possible positions for the case
with three reference nodes and corresponding distances to
them known). Due to the symmetry in Euclidean space, we
have

g Pi ¼ pj
\

j2N i

Pj ¼ pj

 !
¼

1=jSij p 2 Si

0 p R Si

	
; ð4Þ

where jSij is the number of elements in Si if Si is a discrete
set, or the area (or volume) of Si if Si is a non-empty non-
discrete set (e.g., the case with two references).

The joint pdf, gð
T

j2N i
Pj ¼ pjÞ, can be approximated as,

g capj2N i
Pj ¼ pj

� �
	
Y
j2N j

gðPj ¼ pjÞ; ð5Þ

as the distributions of these AUVs are approximately inde-
pendent. Since Tp and Ts are generally large (see Sec-
tion 4.4), the positions of AUVs can be treated as
independent after drifting for a long time (while accuracy
derivation of the joint pdf is rather difficult). Therefore,
(3) can be expanded as,

gðPi¼ pÞ	
Z

pj2U ij ;j2N i

g Pi¼ pj
\

j2N i

Pj¼ pj

 !
�
Y
j2N j

gðPj¼ pjÞ

24 35:
ð6Þ

Hence i’s internal uncertainty U ii with g() being the pdf is
estimated, which is then broadcast to other AUVs. AUVs
receiving this information then use U ii to estimate i’s exter-
nal uncertainty.

4.3. Doppler-based Localization with Uncertainty Estimate
(DOPLU)

DOPLU runs between two consecutive run of DISLU.
Since the vehicle location has 3 parameters to be deter-
mined, in general when the Doppler shifts from more than
3 nodes are extracted, an equation group can be formu-
lated and DOPLU can be run. The time between two con-
secutive runs of the DISLU is divided into sub-slots with
appropriate duration Ts (Fig. 2) so that the DOPLU will be
run at an appropriate frequency. Within each sub-slot,
the vehicle that runs DOPLU extracts Doppler shifts from
the packet it overhears (even if the packet is not intended
to be received by it) from the reference vehicles. With the
additional information it obtains from the packet header
(such as velocity of the reference node), it computes its
own absolute velocity, which is then used to estimate its
own position and internal uncertainty. This reduces the
communication overhead for sending packets to estimate
inter-vehicle distance.

An algorithm is designed so that Ts can be adjusted
dynamically according to the frequency of ongoing
communication activities. Within Ts, an AUV is expected
to collect enough Doppler shifts from its reference neigh-
bors so that the DOPLU algorithm runs efficiently. Note
that if Ts is too small, it is very likely that the velocity
calculated by DOPLU is close to that obtained from the last
calculation, which means waste of computation resources.
On the other hand, Ts should not be too large as it would
lead to too much localization error. The longer Ts is, the less
frequent a AUV calculates its position to correct its velocity
or position estimation error; this increases the error in po-
sition estimation.

In the rest of this section, we focus on the main prob-
lem, i.e., how to estimate the position and internal uncer-
tainty when Doppler shifts are available, and leave the
optimization of Ts in Section 4.4. Using the Doppler shifts
regarding to the reference nodes, i can estimate its own
absolute velocity using the projected positions (i.e., by
adding past velocity times the time passed to past posi-
tion) and velocities. Using this relationship for all reference
nodes, i obtains an equation group to solve, where absolute
velocity vi

�!
can be estimated.

To see how to calculate the absolute velocity, assume
that at the end of one sub-slot, AUV i has collected the
Doppler shift Dfij from reference node j. From the definition

of Doppler shift, we have Dfij ¼ �
vij
�!

 PiPj

�!

kPiPj

�!
k

f0
c , where vij is the

relative velocity of i to j; PiPj

�!
is the position vector from i

to j, f0 is the carrier frequency, c = 1500 m/s is the speed
of sound, and 
 is the inner product operation. From this
equation, we have

vij
�!

 PiPj

�!

k PiPj

�!
k
¼ �Dfij

c
f0
: ð7Þ

Note that we assume the Doppler shift is estimated accu-
rately. In reality, the frequency-dependent Doppler fre-
quency spread is usually significant due to the inherently
wideband nature of the underwater acoustic channel with
low Q-factor. Moreover, the temporary variations in factors
such as temperature, salinity, depth and ocean surface af-
fect the acoustic speed and propagation path, while drift-
ing due to ocean currents affects the motion of the
transmitter and the receiver. All these lead to randomness
in the Doppler measurements. Therefore, estimation of
Doppler shifts is non-trivial and some solutions such as
[17,18] have been proposed. To apply DOPLU, special de-
sign such as OFDM communication [19] can be applied in
physical layer to deal with the generated inter-symbol
interference. In this paper, we focus on the localization
solution itself and assume the Doppler shift reading from
acoustic modem – where appropriate Doppler estimation
techniques have been applied – is accurate. Consideration
of the randomness in Doppler reading in DOPLU is left as
future work.

From (7), assume that i has collected the Doppler shifts

of Nðref Þ
i reference nodes, we then have an equation group

with Nðref Þ
i equations. We then can derive i’s velocity vi

�!
.

Assume ~vi ¼ v ðiÞx ;v ðiÞy ;v ðiÞz

� �
and PiPj

�!

kPiPj

�!
k
¼ aðijÞx ;aðijÞy ;aðijÞz

� �
, (7)

is then
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vij
�!
 PiPj

��!
kPiPj
��!k ¼ vi

!� vj
!
 �

 PiPj
��!
kPiPj
��!k

¼ v ðiÞx � v ðjÞx


 �
aðijÞx þ v ðiÞy � v ðjÞy

� �
aðijÞy

þ v ðiÞz � v ðjÞz


 �
aðijÞz

¼ �Dfij
c
f0
:

By manipulating this equation, we have

v ðiÞx aðijÞx þ v ðiÞy aðijÞy ¼ �Dfij
c
f0
� v ðiÞz aðijÞz þ v ðjÞx aðijÞx þ v ðjÞy aðijÞy

þ v ðjÞz aðijÞz : ð8Þ

In this equation, v ðiÞx and v ðiÞy in the left-hand side are vari-

ables to be solved, whereas v ðiÞz in the right-hand side can

be derived from pressure sensor reading, aðijÞx ;aðijÞy ;aðijÞz

� �
is the normalized vector of PiPj

�!
, and v ðjÞx ;v ðjÞy ;v ðjÞz

� �
is ob-

tained from the velocity information embedded in the
overheard packet header of j.

Considering all the Nðref Þ
i reference nodes, we can obtain

a linear equation group, which can be expressed in a ma-
trix form as Ax = b, where

A ¼

ai1
x ai1

y

ai2
x ai2

y

� �

a
iNðref Þ

i
x a

iNðref Þ
i

y

266664
377775; x ¼

tx

ty

� 

; b ¼

bi1

bi2

�
b

iNðref Þ
i

266664
377775: ð9Þ

Here bij ¼ �Dfij
c
f0
� v ðiÞz aðijÞz þ v ðjÞx aðijÞx þ v ðjÞy aðijÞy þ v ðjÞz aðijÞz . We

want to find the optimal x⁄ such that the sum of squared
errors is minimized. That is,

x� ¼ arg min kb� Axk2
: ð10Þ

From matrix theory, x⁄ can be solved as x⁄ = (ATA)�1ATb.
Once the velocity is calculated, the position of i is updated

as pi ¼ p0i þ~v � Ts, where ~v ¼ v ðiÞx ; v ðiÞy ;v ðiÞz

h iT
.

Assume that the uncertainty regions U ij and the distri-
bution pdf of j within region U ij are known (by embedding
these parameters in the header of the packet), 8j 2 N i; i
can estimate the pdf of being at point p as

gðPi ¼ pÞ

	
Z

pj2U ij ;8j2N i

g Pi ¼ pj
\

j2N i

Pj ¼ pj

 !
� g

\
j2N i

Pj ¼ pj

 !" #
:

Similar to the case of DISLU, i can calculate the distribution
of its own location and, hence, its internal uncertainty
region.

Minimization of Location Uncertainty: Obviously,
localization using different references leads to different
estimation of internal uncertainty and corresponding pdf.
Our objective is to minimize the estimated internal uncer-
tainty. Using our notions of internal and external uncer-
tainty, this can be achieved by solving an optimization
problem. To measure the degree of uncertainty, we use
information entropy as the metric, i.e.,
HðU ij; gijÞ ¼ �
Z

p2U ij

gijðpÞ logðgijðpÞÞdp: ð11Þ

The bigger HðU ij; gijÞ is, the more uncertain U ij is. The rea-
son to use information entropy instead of simply the size
of uncertainty region is that it can better characterize
uncertainty. Example: Assume that an AUV’s position is
distributed in [0,10] along x-axis (i.e., distributed on a line
segment in the 3D space) with pdf being 9.9 in [0,0.1] and
0.1/99 in [0.1,10] (Case 1). Then its entropy is �3.17 bits,
which is less than the entropy 3.32 bits when the AUV is
uniformly distributed in [0,10] (Case 2) or the entropy is
3 bits when the AUV is uniformly distributed in [0,8] (Case
3). Obviously Case 1 is the most certain in these 3 cases
even though Case 2 has the same size and Case 3 has the
smallest size of the region. Note that the information flow
between AUVs can occur in loops; this may not amplify er-
rors of the positioning algorithm, as our problem selects
the neighbors that can minimize the uncertainty.

With this metric, the problem to minimize localization
uncertainty can be formulated as,

Given : N i;U ij; gijðÞ;
Find : A�i ; Minimize : HðU ii; giiÞ;

S:t: : U ii � fq ¼ arg min
X
j2Ai

kdðp; pjÞ � dijk2g; ð12Þ

gðPi ¼ pÞ ¼
Z

pj2U ij ;j2Ai

g Pi ¼ pj
\

j2N i

Pj ¼ pj

 !
�
Y
j2Ai

gðPj ¼ pjÞ
" #

; ð13Þ

jAijP 3; Ai � N i: ð14Þ

Here Ai represents a subset of i’s reference nodes, (12) and
(13) estimate the internal uncertainty and corresponding
pdf when nodes in Ai are used as references; and (14)
are the constraints for Ai so that enough reference nodes
are selected for localization.

To reduce the complexity, we can convert an uncertainty
region (internal or external) into discrete counterparts.
That is, we divide an uncertainty region into a finite number
of equal-size small regions. When the number Ki of small
regions is sufficiently large, the pdf of the AUV’s position
on a point – such as the centroid – in this small region
can therefore be approximated by the probability on a
small region. Hence the estimated external-uncertainty re-
gion can be approximated as the region contained in the
hull of these estimated points. The pdf functions are also
be approximated by the probability mass functions on dis-
crete points, which simplifies the pdf estimation. The above
optimization can then be solved using exhaustive search
algorithm after the discretization. The computation com-

plexity of the exhaustive search is O 2jAi jK jAi j
i

� �
. Since the

number of AUVs is generally small, this complexity is
mainly decided by Ki. Depending on the computation capa-
bility of the onboard processor, appropriate Ki can be used.
Further improvement of the solution can be done after con-
verting it into appropriate optimization that can be solved
efficiently and we leave this as future work.

4.4. Minimization of communication overhead

In this section, we discuss how to optimize Ts and Tp so
that localization overhead can be minimized while keeping
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the localization uncertainty low. We first propose an algo-
rithm to dynamically adjust Ts in order to maintain the per-
formance of DOPLU. Then, Tp is optimized to minimize the
localization overhead.

As for Ts, it should be large enough so that packets from
enough reference nodes are overheard. Suppose Kmin is the
minimum number of reference nodes (or jAij if the optimi-
zation algorithm in Section 4.3 is used) so that x⁄ can be cal-
culated using DOPLU. In the beginning, Ts is initialized as
Ts ¼ R

c þ TTX � Kmin, i.e., the minimum time to overhear pack-
ets from Kmin reference nodes. Suppose that during the last
T 0s period, Doppler shifts from N0 reference nodes with smal-
ler degree of uncertainty (seen by i) than i’s are received. On
average, it takes T 0s=N0 to receive a useful Doppler shift.
Then, the expected time to receive Kmin useful Doppler
shifts is T 0s � Kmin=N0. We update Ts using a weighted average.
That is, Ts ¼ b � T 0s þ ð1� bÞ � T 0s � Kmin=N0, where b 2 (0,1) is
a weight factor.

Using internal and external uncertainty, we can also
optimize the interval Tp running DISLU. By optimizing Tp,
we minimize the overhead to use DISLU and hence the
overall overhead. DISLU is run when the localization error
is large. The localization error can be estimated by calculat-
ing the distance from the position estimated by DISLU to
that estimated by DOPLU. When the localization error is
greater than a threshold dth, DISLU is run to correct the er-
ror. Since the position is not deterministic, this require-
ment is expressed in a probabilistic way. That is, DISLU
should be run when the probability of the localization er-
ror being over dth is above a threshold probability c. There-
fore, to minimize the overhead of running DISLU, Tp should
be maximal under the constraint that the probability of the
localization error being over dth is below c. This can be for-
mulated into the following optimization problem,

Given : U ij; gijðÞ; c;

Find : T�p; Maximize : Tp;

S:t: : PrfkpiðTpÞ~piðTpÞ
��������!

k > dthg < c;

where pi(Tp) and ~piðTpÞ are the prediction positions using
the DOPLU and DISLU after Tp from the last DISLU run time,
Fig. 3. Bellhop profile for typi
respectively. This prediction of future internal uncertainty
is based on the current estimated internal uncertainty and
AUV’s trajectory. A solution has been proposed in [5] for
underwater gliders (one type of buoyancy-driven AUVs),
which we adopt in this work. As the previous optimization
problem, we can also convert it into discrete variable opti-
mization problem and solve it in a similar way. Depending
on the prediction method and the type of AUVs, the com-
putation complexity varies. For example, using the predic-
tion method in [5], the computation complexity is
OðKiNsmpÞ for underwater gliders with Nsmp of position
samples. Note that Ts and Tp can be jointly optimized,
which is more complicated and hence is left as future
work.
5. Performance evaluation

The communication solution is implemented and tested
on our underwater communication emulator [20]. This
emulator is composed of four WHOI Micro-Modems and
a real-time audio processing card to emulate underwater
channel propagation. The multi-input multi-output audio
interface can process real-time signals to adjust the acous-
tic signal gains, to introduce propagation delay, to mix the
interfering signals, and to add ambient/man-made noise
and interference. Our solution is compared against AAL,
DNRL, and CNA, as introduced in Section 2, under an envi-
ronment that is described by the Bellhop model [21]. We
use the typical Arctic sound speed profile as in [22] and
the corresponding Bellhop profile is plotted in Fig. 3. Note
that we use 25 kHz, the sound frequency in use for our
WHOI modem. We modify AAL, DNRL, and CNA, as they
were originally designed for settings that are quite
different from the under-ice environment. Specifically,
AAL, DNRL and CNA all use the AUV that surfaces last as
reference node because intuitively the shorter an AUV
stays underwater (the less time it stays in an uncertain
environment after a GPS fix), the less uncertain its position
is. Triangulation is employed for position calculation in
AAL and DNRL, while EKF filtering is used in CNA. We are
also interested in seeing the performance improvement
that we get using the external uncertainty notion.
cal Arctic environment.



Table 1
Simulation parameters.

Total time 10600 s (�2.94 h)
Time interval, DT 60 s
Deployment 3D Region 2000(L) � 2000(W) � 1000(H) m3

Confidence parameter, a 0.05
AUV velocity 0.25–0.40 m/s [23]
AUV depth range [0,1000] m [23]
Typical currents 0.01–0.03 m/s [24]
Extreme currents 0.04–0.06 m/s [24]
Water temperature range [�2,2] �C [25]
Salinity range [32.5,35] ppt [23]
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Therefore, we implement another version of our proposed
solution without using external uncertainty, i.e., forcing
the position uncertainty to be zero. We denote this modi-
fied version and the original version by ‘Proposed solution
w/o EU’ and ‘Proposed solution w/ EU’, respectively.

In order to evaluate the localization performance, two
metrics, the localization error and the deviation of error,
are used. Localization error is defined as the distance
between the actual and the estimated AUV position. The
deviation of error is the amount the localization error
deviating from the total averaged error. The average
localization error E and deviation of error r are plotted.
The formulae of E and r are expressed as,

E ¼ 1
Lt

XLt

j¼1

1
N

XN

i¼1

Ei

 !
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
Ei � E

 �2

r
; ð15Þ

where N is the number of AUVs in the UW-ASN, Ei repre-
sents the localization error for each AUV operating in the
UW-ASN at that particular time, and Lt is the number of
times the localization is performed, such that Lt ¼ Tend

DT .
5.1. Simulation scenarios

The parameters for our simulations are listed in Table 1.
a is the confidence parameter to estimate the internal and
external uncertainty with 1-a confidence (Section 4.1). The
salinity range in this table is based on typical measure-
ments in [23]; the velocity range is based on typical under-
water vehicles such as underwater gliders [23,26] and
Fig. 4. Two scenarios for simulations: different d
propeller driven vehicles; and the water temperature
range is based on the measurement in [25]. We further as-
sume that ongoing communication packets are generated
according to the Poisson traffic model with arrival rate
being 3 packets per minute. As shown in Fig. 4, we utilize
the following two specific scenarios.

Scenario 1: This scenario involves a team of AUVs who
collaboratively explore an underwater region located un-
der ice. These AUVs remain under-ice for the duration of
the mission and do not return to the surface until the mis-
sion is completed.

Scenario 2: This scenario is similar to the first except
that individual AUVs will periodically surface to update
their positioning via GPS. These AUVs take turns to go back
to the surface at a predefined interval, which is 4000 s in
our simulations. Note that in practice AUVs surface every
one hour [26] or every few hours [23] hence the interval
selected is a reasonable value. In order to avoid ice cover,
these AUVs return to the edge of the ice sheet where they
were deployed. Once an AUV surfaces, it acquires a GPS fix
and updates its current coordinate position (position
uncertainty is also reset).

Both scenarios are tested with typical and extreme cur-
rents, whose speed ranges are listed in Table 1. A random
3D direction is chosen for the current throughout one
round of simulation. The Doppler data is based on the 6-
h Doppler speed measurement that we took using WHOI
modems on November 20th, 2011 in the Bayfront Park
bay, Lavallette, NJ, as shown in Fig. 5. Our measurement
shows that most of the Doppler speeds are low, similar
to the part we plot here. Note that the right hand side in
(7) is replaced with the measured Doppler speed here as
there is no need to calculate the Doppler shifts.

5.2. External-uncertainty prediction accuracy

We are interested in comparing the external-uncer-
tainty prediction accuracy of our proposed UKF algorithm
with that predicted using a simple KF. We compare the
3D sizes and probability mass functions (pmfs) between
those obtained in simulations and those predicted by our
model. Simulations of 100 rounds were performed for pre-
dictions of underwater gliders, and the average results are
otted circles represent different scenarios.



Fig. 5. Doppler speed measurement. Only part of the measurements are
plotted for clear visualization. Time coordinates vary due to different
reception time.
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Fig. 6. External-uncertainty Prediction Accuracy: estimated 3D region
probability mass functions (pmfs).
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plotted in Fig. 6. Note that by ‘Glider (UKF)’ and ‘Glider
(KF)’ we denote the uncertainty for a glider predicted using
the UKF and KF, respectively. From these figures, we can
see that our external-uncertainty model using UKF gives
more accurate predictions than that using KF on the region
sizes and distribution functions. In any of these axis, the
vehicle may be randomly located in a range [s � q/
2,s + q/2], where s is the expected location of this vehicle
in this direction. We call q the size of the uncertainty
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Fig. 7. Scenario 1 with Typical Currents: under the ice mission with no
resurfacing.
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region as it determines the range the AUV may be distrib-
uted in. We assume that at time 0 there is no position
uncertainty (e.g., AUVs are on the ocean surface where
GPS is accessible) and that estimations of the external
uncertainty are run at the same time. To compare the dis-
tribution functions, in Fig. 6 we also align the pmfs (i.e.,
move the expected positions of the vehicle in these three
cases to 0). Each pmf value at a discrete position, say x0,
is calculated by checking if the vehicle lies in [x0 � w/
2,x0 + w/2], where w is the interval size. Note that the long-
er an AUV stays underwater, the less accurate the predic-
tion is. Provided an accuracy threshold, our model can be
used for AUVs to decide when to surface for position cor-
rection (e.g., to get a GPS fix).

5.3. Localization performance

Real time (one simulation run) localization errors and
deviations of error are plotted in the first two subfigures
of Figs. 7–10. Moreover, to obtain results of statistical sig-
nificance, 250 rounds were conducted for varying numbers
of AUVs. The average errors for the AUV’s predicted loca-
tion are plotted in Figs. 7, 8, 9 and 10(c) with 95% confi-
dence intervals.

Scenario 1: As shown in Figs. 7 and 8, our original solu-
tion ‘Proposed solution w/ EU’ performs the best. In the typ-
ical current setting, ‘Proposed solution w/ EU’ obtains about
74.6% less error than ‘Proposed solution w/o EU’ while it ob-
tains 80.4% less error in the extreme current setting. This is
mainly due to the use of the external uncertainty model to
predict the position and distribution of the AUVs and the
ability to minimize the localization uncertainty. ‘Proposed
solution w/o EU’ ranks the second in terms of error perfor-
mance because an AUV can leverage the ongoing communi-
cations and cooperation of other AUVs for localization. Even
though CNA uses EKF to predict the positions, its perfor-
mance is worse than ‘Proposed solution w/o EU’ since the
AUV can only use its own states for position estimation.
On the other hand, CNA is still better than DNRL and AAL
due to the use of EKF filter, and DNRL performs better than
AAL since it takes the current influence into account.

By comparing Figs. 7 and 8, we can see that under ex-
treme conditions, the localization error keeps increasing,
since more dislocation is incurred by the extreme currents.
Interestingly enough, we can see that the performance of
our solution without using external uncertainty is not
much better than that using CNA. In this case, using Dopp-
ler information does not help improve the localization
much since the position uncertainties associated with
other AUVs are also large and thus the performance is
not too much better than that of using EKF. However, our
solution using external uncertainty still performs the best
due to the ability to estimate the position uncertainty
and then use such information to minimize uncertainty.

Scenario 2: As shown in Figs. 9 and 10, the performance
ranking for these solutions closely resembles that in Sce-
nario 1. However, the localization performance in Scenario
2 is much better than that in Scenario 1 since AUVs can ob-
tain position correction periodically, as seen by comparing
Figs. 7 with 9 (or Figs. 8 with 10). From these figures, we
can see that localization error and deviation decrease when
AUVs surface, i.e., at 4000 s and 8000 s in the results. More-
over, we can see that for typical current settings in Sce-
nario 2, the localization error and its deviation can stay
within certain threshold for ‘Proposed Solution w/ EU’,
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Fig. 8. Scenario 1 with Extreme Currents: under the ice mission with no
resurfacing.
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Fig. 9. Scenario 2 with Typical Currents: under the ice mission with
resurfacing.
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while the error of other solutions tends to increase. This
shows the effectiveness of our proposed solution in mini-
mizing the localization uncertainty.
5.4. Communication overhead

Last, we compare the communication overhead of our
solutions against other solutions. As shown in Fig. 11,
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Fig. 10. Scenario 2 with Extreme Currents: under the ice mission with
resurfacing.
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Fig. 11. Comparison of communication overhead.
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‘Proposed solution w/o EU’ achieves less overhead than
CNA, DNRL and AAL due to the ability to exploit the Dopp-
ler shifts of ongoing communications for localization,
reducing the use of ranging packets. ‘Proposed solution
w/ EU’ has the biggest communication overhead in the
beginning because of the need to broadcast external uncer-
tainty information (such as pdf information). However, due
to the ability to optimize the update intervals Ts and Tp as
in Section 4.4, its communication overhead drops quickly
to a level that is lower than CNA, DNRL and AAL. CNA has
higher overhead than DNRL and AAL as CNA needs to
broadcast additional information such as velocities and
sensor readings for EKF while DNRL and AAL only need
to broadcast the position and time information that is
embedded in the ranging packet. Note that in ‘Proposed
solution w/ EU’, to save the overhead, when the AUVs
broadcast the pdf information, they only broadcast the
key parameters if the pdf is one of the well-known distri-
butions (e.g., the average and standard deviation for a nor-
mal distribution). Otherwise, the point mass function of a
finite number of points is broadcast.
6. Conclusion and future work

We proposed a localization solution that minimizes the
position uncertainty and communication overhead of
AUVs in the challenging under-ice environments. With
the notion of external uncertainty, position uncertainties
of the AUV can be modeled in a probabilistic way. This
model is further used to estimate the uncertainty resulted
from localization techniques, as shown for our proposed
Doppler-based localization and the standard distance-
based localization. Algorithms are then proposed to
minimize the position uncertainty and communication
overhead. Our solution is implemented on WHOI modems
and compared with several existing localization tech-
niques using an acoustic communication emulator. It is
shown that our approach achieves excellent localization
results with low localization overhead. Further work will
be to implement our proposed localization solution on
AUV platforms and evaluate its performance in ocean
experiments.
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