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Abstract—Underwater mobile sensor networks such as Au-
tonomous Underwater Vehicles (AUVs) or robots are envisioned
to enable applications for oceanographic data collection, en-
vironmental and pollution monitoring, offshore exploration,
and distributed tactical surveillance. These applications require
running compute- and data-intensive algorithms that go beyond
the capabilities of the individual AUVs that are involved in a
mission. To execute these task-parallel algorithms in resource-
and time-constrained environments, dynamic and reliable collab-
oration between local networked robots (e.g., AUVs) and remote
public Clouds is needed. To this end, the heterogeneous sensing,
computing, communication, and storage capabilities of local and
remote resources are exploited to form a “loosely coupled” mobile
Cloud, and a novel resource provisioning engine that dynamically
takes decisions on “what” and “where” the tasks should be exe-
cuted in the mobile Cloud is introduced. Comparison of benefits of
collaboration between local and Cloud resources with purely local
and centralized approaches are presented through exhaustive
computer simulations.

Note to Practitioners—The mission length and operations of any
underwater application such as data collection, environmental
monitoring, and undersea exploration are severely limited by
battery capacity of AUVs. During the course of a mission, many
computation-intensive tasks have to be executed, along with es-
tablishing communication with other vehicles in the team, which
leads to further consumption of battery capacity. In this paper,
a communication framework is introduced that expands the
resources (computation and data resources) available to the team
of AUVs by including public Clouds. A public Cloud consists in a
set of networked computers that provide a range of computation
and storage resources on demand and at a nominal price. A
resource provisioning engine is designed to share the workload
between local and Cloud resources based on communication
cost, computation cost, and battery capacity. Such a framework
enables increasing the lifetime of vehicles, execution of tasks with
higher accuracy, and exploitation of any external information in
the Cloud that is not available to a team of AUVs in the field.

Index Terms—Amazon EC2, autonomous underwater vehicles,
cloud computing, robot coordination.
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I. INTRODUCTION

U NDERWATER mobile sensor networks have been envi-
sioned to enable a variety of applications such as envi-

ronmental and pollution monitoring, disaster prevention, and
assisted navigation. These mobile networks are formed by va-
riety of sensors attached to Autonomous Underwater Vehicles
(AUVs), low-power propeller-less (buoyancy-driven) gliders,
or unpowered drifters. The information extracted from the raw
data (such as dissolved oxygen, pH, turbidity, and algae con-
centration) collected by these mobile sensors provide us with
greater knowledge of physical, chemical, geological, and bio-
logical variables of an aquatic environment. This information
is vital for early detection and forecasting of environmental
changes and of their effects on biodiversity, coastal ecosystems,
and climate. For example, detecting in real time the changes
in water-quality of rivers, lakes, and water reservoirs from raw
data is critical to prevent contaminated water from reaching
the civilian population by deploying appropriate treatment so-
lutions or at least by issuing early warnings. Water-contami-
nation incidents such as the one occurred in West Virginia on
January 9, 2014 caused by a chemical spill [1] may lead to the
non-availability of drinking water for thousands of residents,
livestock and irrigation, and may also result in adverse effects
on aquatic life. Enabling near-real-time data acquisition and
processing of high-resolution, high-quality, heterogeneous data
from water bodies would allow the immediate withdrawal of
water to a plant in the case of an emergency and save damage
to human and aquatic life.
Deploying a static sensor network, with a predefined configu-

ration of sensing nodes, or a mobile network with fixed/random
trajectory of vehicles is not among the most effective ways to
gather data as the area of scientific interest may occur sporad-
ically and propagate dynamically through the water bodies.
AUVs–with their ability to drift, drive, or glide through vast
water bodies without real-time control by human operators
[2]–have presented themselves as a new tool for a multitude
of applications ranging from environmental monitoring to
surveillance. However, light AUVs for low-depth water bodies
such as lakes and rivers are battery-operated vehicles and,
hence, mission duration and operations are severely limited by
the vehicles' battery capacity. Moreover, any mission requires
execution of multiple computationally demanding tasks on
on-board processors, whose complexity increases as the size of
the 3D region of interest being sampled increases. Examples of
such tasks include optimal vehicle path planning, estimation of
environmental phenomena from the raw data collected during
a mission, sample-based statistical modeling, information
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Fig. 1. Heterogeneous computing pool constituting local resources [static sen-
sors/teams of Autonomous Underwater Vehicles (AUVs)] and remote resources
(Public Clouds, on-shore station, satellites) to enable near-real-time computa-
tion-intensive underwater applications.

fusion, etc. Furthermore, these vehicles communicate among
themselves, with the on-shore station, and satellite during the
course of a mission, which leads to further consumption of
battery capacity [3].
Public Clouds have presented themselves as a new oppor-

tunity for the scientific community to enable computationally
intensive applications. A public Cloud consists in a set of
networked computers that provide a range of computation
as well as storage resources and that give the appearance of
infinite computing capabilities available on demand and at a
nominal price [4]. In this work, we present a novel collab-
orative framework (as shown in Fig. 1) that combines the
benefits of both the mobile sensor network of AUVs (for in-situ
measurements) and the Clouds (endowed with high-computing
capabilities). Using Cloud resources allows energy-hungry
AUVs to outsource their computation to the Cloud and, hence,
to extend their lifetime and consequently the mission length.
We envision a resource provisioning framework that enables
collaboration between local and Cloud resources, and makes
dynamic decisions on “what” and “where” the tasks in an appli-
cation should be executed based on network latency, deadline to
finish the application, network conditions, and vehicle battery
capacity. We present a representative application, water-quality
monitoring of river, lakes, and reservoirs to show the benefits
of our proposed framework.
The proposed framework is the first work to enable interac-

tion between Cloud and mobile underwater vehicles for near-
real-time applications for aquatic environment. Our novel re-
source allocation engine enables real-time water-quality moni-
toring by sharing computation tasks between local and remote
resources in terms of computation by dividing the tasks between
the local and Cloud resources. We support collaboration based
on two different objectives, namely: i) minimizing energy and
ii) minimizing cost of using Cloud resources. We further pro-
pose two polynomial-time heuristics on how to share tasks be-
tween different Cloud and local resources based on these two
objectives. Also, the proposed collaborative framework allows
seamless task migration from local network to the Cloud.
To summarize, our main contributions in this paper are the

following:
• We present a framework—composed of resources in local
network (AUVs and static sensors) and remote network

(Public Clouds)—that forms a “loosely coupled” mo-
bile/fixed Cloud, where the resources collaborate to enable
high-accuracy, high-resolution applications.

• We present two polynomial-time heuristics to solve the re-
source-allocation problem depending on the objective of
the mission, i.e., saving energy of local resources or cost
of using Cloud resources.

• We demonstrate the benefits of the exploitation of Cloud
resources, and compare the performance of our solutions
with a purely local or a purely centralized approach.

The rest of the paper is organized as follows. In Section II,
we discuss the related work in the area of Cloud robotics. In
Section III, we present the different entities of our proposed
communication framework. In Section IV, we introduce our
novel resource provisioning framework to allocate tasks be-
tween Cloud and local resources. In Section V, we describe our
experimental methodology and results. Finally, in Section VI,
we provide the conclusive summary.

II. RELATED WORK

Cloud robotics offers a new paradigm by providing compu-
tational capabilities and storage space much beyond that sup-
ported by current robotic infrastructures. This opens up new
applications and widens the scope of current ones. We briefly
review the work done so far in the area of Cloud robotics and
automation, and discuss how it differs from our contributions.
Current Cloud robotic projects provide access to global li-

braries of images, maps, and object data annotated with geom-
etry and mechanical properties. Projects such as RoboEarth [5]
have developed a giant database where robots share informa-
tion about objects, environments, and tasks. This database stores
knowledge generated by humans and robots in a machine-read-
able format. The data set includes software components, maps
for navigation, task knowledge, and object-recognition models.
In our work, instead, we use Clouds as an on-demand compu-
tational resource for execution of tasks rather than simply as a
database.
Current solutions provide massively parallel computation

on demand for computationally intensive tasks like optimal
motion planning and sample-based statistical modeling. In
[6], the author proposes Cloud-enabled robots that can offload
CPU-heavy tasks to remote servers, relying on smaller and less
power-hungry on-board computers. Similar to this work, few
researchers at Singapore's A-Star Social Robotics Laboratory
(ASORO) have built a Cloud-computing infrastructure that
allows robots to generate 3D maps of their environments [7].
Some authors have provided a software framework where
many of the robotic computationally intensive algorithms are
parallelized as Map/Reduce tasks in Hadoop [8]. This frame-
work is presented as Software-as-a-Service (SaaS). We, on
the other hand, use the Cloud as Infrastructure-as-a-Service
(IaaS) to enable cooperation between Cloud and local resources
and execute parallel tasks. Also, our resource provisioning
framework, while allocating tasks to Cloud resources, con-
siders the application deadline and quality of wireless network
connectivity, which the current solutions are agnostic about.
Current robotic cloud solutions enable sharing of open-source

code, data, and designs for programming, experimentation,
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Fig. 2. Interaction between local and Cloud resources, which contribute
uniquely to the provisioning framework, i.e., the former offer in-situ data while
the latter offer vast computing capabilities.

and hardware construction. In [9], the authors present an
open source Platform-as-a-Service (PaaS) framework called
Rapyuta, which is designed specifically for robotics applica-
tions such as RoboEarth. In our work, we use the Cloud as an
IaaS and, depending on deadline and monetary constraints, we
select the required hardware/software resources in the Cloud.
The current robotic cloud solutions also enable sharing of out-

comes, trajectories, and dynamic control policies. In [10], the
authors present a framework where a distant group of robots
can share and exchange learned skills through Cloud services.
These services have been represented as a storage repository
in an assisted-living scenario in order to utilize information ob-
tained from spatially separated robots and reproduce a user's sit-
uation. This is different from our work where we conduct on-de-
mand execution of tasks in the Cloud rather than using them as
a storage space.

III. RESOURCE PROVISIONING FRAMEWORK

We first introduce our envisioned heterogeneous computing
framework, which is composed of resources from both the local
and the Cloud resources. We explore the communication and
computing capabilities of different entities in the framework,
and describe the logical roles of each of the resources to enable
different applications in underwater mobile sensor networks.
We utilize the water-quality monitoring application as an ex-
ample to show how similar applications can benefit from col-
laboration between local and remote resources. We also present
collaboration of resources in the field (rivers, lakes, or water
reservoirs) to enable distributed coordination control and colli-
sion avoidance for a team of vehicles.

A. Entities of Our Framework

We now explore the physical architecture of our framework,
which constitutes the computing and communication capabili-
ties of different resources. Next, we describe the logical roles of
each of the resources used to enable different underwater appli-
cations in resource-constrained environments. Fig. 2 illustrates
how these service providers interact with each other and the ben-
efits of using each one of them.
Physical Architecture: The resources in the field (e.g., AUVs,

drifters, static sensors, and buoys) are part of the local resources.
Each AUV in a team involved in a mission is equipped with
satellite phones as well as with radio modems. The vehicles

TABLE I
SPECIFICATION OF DIFFERENT LIGHTWEIGHT AUVS

TABLE II
PERFORMANCE OF DIFFERENT AMAZON EC2 INSTANCES

communicate with the surface buoy via acoustic communica-
tion and the buoy communicates with the surface station via
RF. Table I lists the specifications of a few different lightweight
AUVs on the market in terms of communication capabilities,
total energy (battery capacity), maximum depth, and speed. The
on-shore base station could range from a simple laptop to an
enclosure of servers endowed with an array of RF modems.
On-shore station, satellite, and the Cloud form the remote re-
sources. The on-shore station communicates with the surface
buoys via an on-board RF modem and with the remote Cloud
resources via an Internet (e.g., Ethernet orWiFi) connection. Al-
locating resources ahead of time (e.g., in a private datacenter)
may lead to over- or under-provisioning of resources, leading
to inefficiencies or to the infringement of the application ser-
vice level agreement, respectively. Conversely, public Clouds
provide resources on demand, thereby eliminating the need for
users to plan far ahead for Cloud service provisioning. Also, the
users pay only for the computing resources they use and free
the machines as well as storage space when they are no longer
needed. As a result, only a basic infrastructure is needed at the
on-shore station (to communicate between local resources and
Clouds), which saves time and cost of maintenance of a private
datacenter. Table II presents the various computing resources
in terms of Virtual Machines (VMs) and storage available in a
public Cloud Amazon EC2.
Logical Roles: In our framework, we assign logical roles to

each of the resources based on the tasks performed by them.
This is an extension of our previous middleware work where we
only considered in-situ resources [11]. Our vision is to organize
the heterogeneous sensing, computing, and communication
capabilities of fixed devices (in remote resources) and mobile
devices (AUVs) to form an elastic resource pool. The entities
of this resource pool play one or more of the following logical
roles: (i) requester, which places requests for application work-
loads that require additional data and/or computing resources
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from other devices, i.e., AUVs; (ii) service provider, which
can be a data provider (a sensing device like AUV or static
sensors), a resource provider (a computing device) or both,
i.e., Cloud instances and AUVs; and (iii) arbitrator, which is
in charge of handling requests and orchestrating the execution
of applications in the heterogeneous computing environment,
i.e., on-shore station. The on-shore station communicates its
decision to the buoy, which in turn communicates with the
AUVs. These vehicles may or may not rely on underwater
acoustic communications to make resource-allocation decisions
depending on the achievable bandwidth of such communication
interface.

B. Two Representative Applications
We present here two representative applications that can be

enabled by our framework: the first is water-quality monitoring,
which illustrates a possible collaboration between Clouds and
local resources to help AUVs save energy and increase their
mission length; the second allows AUVs to serve as a resource
pool to enable distributed coordination control and collision
avoidance for a team of vehicles while they are at the field col-
lecting raw data for the mission.
Water-Quality Monitoring via Adaptive Sampling: Every

year hundreds of billions of gallons of untreated sewage flow
into our rivers, lakes, and coastal waters. Untreated sewage
contains a wide array of pathogens, chemicals, and nutrients,
many of which pose a serious threat to human health. Impact
to humans from these harmful algae include severe illness and
potential death following consumption, or indirect exposure to
toxins in algae. Moreover, these chemicals cannot be treated by
basic water-treatment methods and require additional biolog-
ical treatments. To enable near-real-time detection and tracking
of these algae blooms in rivers, we leverage the work done by
Smith et al. in [12]. Fig. 3 shows the steps undertaken to detect
the presence of algae bloom in a water body. Based on raw
data from a preliminary scanning of a river, we can detect the
presence of algae bloom. In the next step, we generate locations
(waypoints) for the AUVs to detect the algae concentration,
which requires tracking the centroid and boundary of the algae
concentration. As this concentration moves with the water
body, the Regional Ocean Modeling System (ROMS) is used
to predict the hourly forecast of location of algae bloom for a
certain duration, which will help detect the movement of algae
over a period of time. While a team of AUVs is executing the
mission in the field, e.g., by performing adaptive sampling, the
Cloud continues to track the phenomenon at a higher resolution
for both spatial and temporal scales so to predict with higher
accuracy the movement of algae bloom. If the phenomenon
does not follow the pre-determined trend, the team of AUVs
communicate with the satellite, receive a new/updated trajec-
tory from the Cloud based on the execution of high-resolution
prediction models, and retrigger local decision making.
Coordination Control for a Group of AUVs: To prevent col-

lisions among AUVs in a team and help the vehicles follow
a specified trajectory, we consider velocity-consensus control.
We have previously proposed algorithms in the area of forma-
tion and steering for a team of AUVs [13]. These algorithms
rely on underwater acoustic communications and were shown

Fig. 3. Water-quality-monitoring workflow for detection and tracking of algae
bloom in rivers. The application involves tasks at different spatial and tem-
poral scales, and gives output at different resolutions. Blue-colored boxes (at
the bottom) indicate tasks that are executed at a higher spatial and temporal res-
olution than those in red.

to be robust against ocean currents and acoustic channel impair-
ments (e.g., high propagation and transmission delay, and low
communication reliability). In this work, we employ a Local
Minimum Spanning Tree (LMST)-based consensus control of
multi-AUVs [14] for coordination control of team of AUVs. A
safety-region concept is considered for each AUVwith physical
kinematics and dynamics constraints. Each AUV achieves the
same velocity by communicating and exchanging its velocity
and position information only with its neighboring AUVs. One
of the advantages of the LMST-based adaptive sampling for-
mation control of AUVs is that not only the connectivity of the
AUV network is preserved but also the energy consumption and
network communication quality are improved. Our proposed re-
source provisioning framework allows the team of AUVs to
serve as a local resource pool so to enable distributed coordi-
nation control and collision avoidance. Underwater communi-
cation also requires estimating the position of AUVs in a team
before communicating. In [15], we have presented a statistical
approach to estimate the position uncertainty of AUVs in a team
based on which a favorable network topology is predicted with
relatively short links and transmission is postponed in favor of
a lower transmission energy and a higher data rate in the future.
We now present our coordination control algorithm for a team

of vehicles while they are at the field collecting samples. An
-AUV system is assumed to lay in a 2D planar space as we

consider these vehicles to float in water at a particular depth
(hence a 2D dimension for the AUVs is considered). We denote
the AUV system as , where the th AUV
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is denoted as with a circular shape of radius . For , the
(sensing) neighbors is a subset that satisfies

, where is the sensing range
of AUV . We also define the (physical) neighboring robots
for as , where is
the maximum communication range of .
For motion planning and adaptive sampling formation, each

AUV's motion is considered as discrete-time particle dynamics
in 2D space as

(1)

where is the controlled acceleration (at the th step) and
is the control updating time period. For AUVs and

, let , and denote their position and velocity vec-
tors (in the navigation frame), respectively. The relative po-
sition vector is and the directional vector is

. It is straightforward to calculate the rela-
tive distance and the relative velocity magnitudes

, where . We also
define as the angle between and .
A safety region, denoted as , of two AUVs and is

defined as a set of all triples such
that the and , where . From
the results in [14], the safety region between AUVs and
is calculated as

(2)

where , and
, with

. With the above safety-region
definition, we calculate the collision-free region for AUV

(3)

It is proven that in (3) is a convex set.
Through communication, the AUVs team forms an undi-

rected simple graph , where is the set of AUVs,
and is the edge set defined by the (physical) neighbors

of , namely, . For each
AUV , we assign a unique id, for example, ,
and we denote as the induced subgraph of
such that . We construct the LMST in several steps.
First, each node periodically broadcasts a message
using its maximal transmission power to obtain its physical
neighbors . Based on , AUV can construct a local
minimum spanning tree of that
spans all nodes within its neighbors in . The construc-
tion of LMST can be obtained using existing algorithms,
such as the Prim's algorithm. Here a unique weight func-
tion (as a triplet) has been defined on the edge as

such
that the constructed LMST is unique. With the LMST, is
a logical neighbor of , denoted as , if and only if

. The (logical) neighbor set of is
defined as .
With the above LMST topology, we consider the AUV mo-

bility's impact on the local topology . We assume that all
AUVs are distributed in the region and let denote the
number of physical neighbors of , where denotes the car-
dinality of a set. The probability that any other AUVs enter
the covered communication zone of can be calculated
and is obtained in [14]. We then obtain the expected (or esti-
mated) number of AUVs that enter within period as

. The number of nodes that leave within
can also be estimated as , where

is
the estimated position vector of in . With the estimate of
the number of AUVs that are entering and leaving , we obtain
the estimated net change of the node number in

of AUV .
For AUV with dynamics specified in (1), we consider the

following coordination control law:

(4)

where are the weighting factors. If we define
, then the matrix can

be considered as a weighted adjacency matrix of LMST . Note
that, due to the AUV mobility, matrix is time varying.
We also consider the constraint
for a scaled velocity distribution among AUVs. To satisfy the
requirements in collision avoidance, preserving connectivity
among the AUV networks, and physical dynamic constraints,
we consider to optimize the weighting factors over
the safety region and with the consideration of topology
change among , namely

(5)

We have proven that, if there exists a set of by (5) such
that the number of neighboring nodes is kept non-decreasing
(i.e., ), then under the consensus control law (4),
the AUV team converges to the same velocity ( as

, where is determined by the commanded initial
configuration of the networks and AUVs.

IV. PROPOSED SOLUTION
Our resource provisioning framework can be harnessed to en-

able innovative mobile applications that rely on real-time pro-
cessing of massive amounts of sensor data generated in the field.
Our idea is to offload certain tasks to the remote Cloud re-
sources so that we can save the battery expenditure incurred in
executing these tasks locally on AUVs. We represent our ap-
plication workflow by a Directed Acyclic Graph (DAG), with
tasks denoted by nodes in the graph. A directed edges indicate
the information flow from one task to another. Nodes on the
same level (i.e., stage) of the workflow are executed in parallel,
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whereas nodes in consecutive levels are executed sequentially.
Each stage is to be considered as blocking, i.e., the execution of
tasks in successive levels (stages) can occur onlywhen the tasks
in the previous stage are completed (in general, in fact, the in-
puts of tasks at stage are the outputs of the tasks at stage

). The DAG is defined by a tuple , where is
the set of task nodes, , and is the
number of nodes, is the set of communication edges, where

is the communication cost from node
to , and .
We assume that there are AUVs, types of Cloud in-

stances, and (equal to ) number of tasks in a workflow.
Let denote a task in the workflow, with , where
the task execution time depends on the computation of th task
with input data . Also, let denote the execution time
of the task at a local resource, i.e., an AUV in our case, and

denote the remote execution of task at the re-
source type. Furthermore, let be the communication time
for sending data from the local resources to the on-shore re-
sources. Execution time for task comprises of computation
time of the task and initialization time , which includes
the time required to acquire the resources and the communica-
tion time to receive the input data from the local resources. Let

denote the communication time required to send input data
from the on-shore station to the type Cloud instance, and
denote the communication time required to send input data be-
tween AUVs. is denoted as the time required to acquire the
th Cloud instances and is zero for AUVs. Let denote the

price/hr of using the th Cloud instance. Last, and denote
the indicator functions.
To share the computation cost between local and Cloud re-

sources we propose two policies: in the first, , the goal
is to minimize the time to execute an application and, conse-
quently, the energy expenditure of the mobile devices; while in
the second, , the goal is to minimize the price budget
of using Cloud resources.

A. Minimization of Residual Energy of the AUVs

The objective of the first policy, , is to minimize the
execution time of an application. This policy does not take into
account the monetary expenditure of running the application in
the Cloud. The parameters involved in the policy are residual
battery capacity of AUVs, data rate from buoys to on-shore sta-
tion and from on-shore station to Cloud resources, and compu-
tational capability of different VMs in the Cloud

(6)

where denote the execution time of the task at a local
resource, and denote the remote execution of task
at the th resource type. Initialization time in the remote re-
source pool includes the time required to acquire Cloud
resources from the remote server and the communication
time to receive the input data from the local resources . Ini-
tialization time in the local resource pool only includes
the time required to receive the input data from the neighboring
local resources . Equation (6) imposes that a task can be
allocated to only one resource.

B. Minimization of Budget for Using Clouds
The objective of the second policy, , is to minimize

the price budget of using Cloud resources. The resource pro-
visioning engine involves remote resources in the execution of
application only when it is within the budget

(7a)

(7b)

(7c)

where (7a) imposes that a task can be allocated to only one re-
source, (7b) represents the time taken for executing the applica-
tion, and (7c) constraints the time taken to execute using policy

, to be times of policy , where , decided by
the arbitrator, is a proper fraction (i.e., less than 1). This is done
to meet the limited budget requirements. By making less than
1, the resource allocation framework prefers assigning tasks to
local resources (no cost is associated to execute applications
on them) and/or VMs with low computation capabilities (hence
cheaper than VMs with high computational capabilities). As a
result, the application is able to meet budget requirements at the
cost of increase in execution time.

C. Heuristic for Policy—
Allocating tasks in a DAG to different resources in the frame-

work so to minimize the execution time is similar to the problem
of partitioning a DAG and allocating each partition to a unique
resource such that the objective of minimizing execution time
is achieved. However, graph partitioning is an NP-hard problem
[16]; hence, we present a polynomial-time heuristic to solve this
problem. For the policy there are no restrictions on the
monetary requirement, hence, we can use any number of VMs
in the Cloud without considering the price that we have to pay.
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A lot of work has been done in scheduling tasks in a DAG for
homogeneous processor. However, our problem consists of allo-
cating tasks to heterogeneous resources as each local and Cloud
resources have different computational capability. We improve
upon the solution in [17], which presents scheduling of tasks in
a DAG to homogeneous processors.
The solution in [17] involves two lists: Free List (FL), which

contains the nodes that have been allocated to a resource and
will not be considered in the clustering algorithm, and Partially
Free List (PFL), which contains the nodes whose at least one
of the parent node is not in FL. Initially, FL is an empty set. In
the beginning of the clustering algorithm, each task is given to a
unique processor, which executes the task in the lowest possible
time. The algorithm then finds the Dominant Sequence (DS),
which is defined as the length of the longest path in the DAG. If
on merging two sequential nodes, i.e., executing the task on the
same VM and making the edge cost zero, the DS reduces, then
these nodes (tasks) are executed on the same processor and are
executed based on their order in DAG. The set of tasks executed
on the same processor are said to form a cluster. This method
continues until DS cannot be reduced further. Data-structure

stores different clusters, where each cluster is a set of
tasks executed at a unique processor. The advantage of this
method is that, when the tasks are merged, the communication
time between nodes becomes zero and the overall time taken
by the DS decreases. This algorithm employs linear clustering,
which clusters parallel tasks (tasks on the same level/stage) to
different processors.
Algorithm 1 shows our proposed heuristic. To cluster tasks

for heterogeneous processors, we recreate a new DAG. We first
find the Communication to Computation Ratio (CCR); this can
be achieved by finding the median of the time taken by a task
at different resources and then taking an average
over all these median times . If in high CCR domain

, then we create a task DAG by including the edge
weight that gives the lowest communication cost of sending
data to a particular resource and node weight of executing task
in that particular resource. Conversely, if in low CCR domain

, we create a new task DAG by including edge
weight that gives the lowest computation cost of executing data
at a particular resource and edge weight of sending data to that
particular resource.

D. Heuristic for Policy—
For the policy , a bounded number of VMs is con-

sidered since we want to minimize the cost of using Cloud re-
sources. In Amazon EC2, each VM instance is allocated for
an hour and, if a task in an application completes execution in
less than an hour, then another task can be reallocated to that
VM. We present a greedy algorithm to allocate task to these re-
sources. Our idea is to allocate the task that requires the max-
imum computation resource first and then add it to the resource
that is times the best resource to execute the task. Our proposed
heuristic is given in Algorithm 2. This heuristic task allocation
is done by allocating tasks to resources that give the earliest
finishing time. Each Cloud resource has a finite queue length

, which is equal to the Lease Time (LT) given in
the Service-Level Agreement (SLA). We order the tasks on the
basis of consumption of resources (for computation as well as
communication). We pick the task from this list that consumes
the maximal resources. If there are more than one, we pick a
task randomly from the set. The resource that gives the earliest
finishing time for this task is selected and the task is added to its
queue . If the addition of an incoming task makes the
queue length become greater than the leased time, then a new
instance of the resource is created and the task is given to the
new instance. A schedule is finally created in which
tasks will be assigned to different resource providers.

V. PERFORMANCE EVALUATION
The focus of this section is to study the benefits of collabo-

ration between local and Cloud resources in the representative
water-quality monitoring application. We first demonstrate how
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Fig. 4. Reconstruction error for temperature data as the speed of ocean currents
is varied. We compare the scenario when computation is done locally with no
knowledge of ocean currents versus when computation is done in Cloud with
complete knowledge of currents.

additional knowledge about ocean currents increase the accu-
racy (in terms of reduction in reconstruction errors) of the recon-
structed maps. Next, we quantify the benefits of collaboration
between Cloud and local resources. We consider three cases:
purely local computation of tasks, purely centralized computa-
tion of tasks in the Cloud, and collaboration between local and
Cloud resources to execute a task. We performed our simula-
tions in MATLAB using real-data traces.
Higher Accuracy: To estimate the accuracy of reconstruction

algorithm in a purely local implementation, each AUV works
with a subset of data to reconstruct a subset of a field, and then
the field reconstructed by each AUV is consolidated to gen-
erate the map for the entire region. Local reconstruction has no
knowledge of ocean currents. Although this reconstruction is
faster and computationally less expensive, its accuracy is low.
In a purely centralized reconstruction, the AUVs send all the
data to the Cloud and the reconstruction is done at one of the
Cloud instance. Here, the knowledge of ocean currents is avail-
able to the Clouds as they have the infrastructure required for
estimation of ocean currents. In a collaborative effort, the local
resources only receive data from the Clouds. The data here is
ocean currents for the field being sampled. The local AUVs
work on a subset of data because each mission results in the
collection of a large amount of data that cannot be processed by
on-board processors.

Simulation Setup: In our analysis, we use real-data traces
(ocean surface temperature and salinity maps) from [18]. The
data is from Southern California Bight region (the SCB is the
oceanic region contained within 32 N to 34.5 N and 117 E to
121 E). The data is collected via satellite from a field of size 60
60 km with 1 km of spatial resolution.
Observations: Fig. 4 shows the comparison of local and

centralized reconstruction of algorithms when knowledge of
ocean current is available to Clouds. We see that after including
the knowledge of ocean currents the performance increases
by 36% when the velocity of ocean currents is 1 m/s in the

direction and by 53% when the current velocity is 2 m/s in the
direction. As the current velocity increases, the performance

of local reconstruction gets worse.
Execution Time: We compare the performance of our pro-

posed collaboration framework to distribute tasks with respect
to local and Cloud resources. Our goal is to understand the pa-
rameters that take a part when the tasks are shared between local
and remote resources. Specifically, we focused on two parame-
ters, namely, data rate of RF modems of AUVs and amount of
data send from local network to Cloud resources.

Simulation Setup: We vary the data rate of the RF modem
from 0.1 to 10 Kb/s and observed the execution time taken by
the application. The AUVs communicate with each other by
connecting to a buoy (local start topology). The buoys send
data to the on-shore station via RF modem. We assume that the
on-shore station is connected to the Internet and sends data to
the Cloud over a high-speed connection.

Observations: In Fig. 5(a), we observe that, for a given
amount of input data to be transferred from local to Cloud re-
sources, the execution time depends heavily on the bandwidth
of the medium. We see that the execution time for local nodes
remains constant as they communicate via buoy. The commu-
nication time using our framework and from Cloud varies with
the data rate and we see that, as the data rate increases for the RF
modem, the execution time decreases. At the data rates 100 Kb/s
and higher the collaborative framework performs as the Cloud
framework because the data can be completely offloaded to the
Cloud to get minimum execution time. We see that for 0.1 kb/s
the execution time achieved by our framework is 38% less in
comparison to execution only at Local resources, and 15% less
than if the execution is carried out only at the Cloud resources.
For 10 Kb/s, both Cloud and our framework perform 77% better
than using only Local resources.
In Fig. 5(b), we observed that for a data rate of 0.1 Kb/s, the

size of input data to tasks is varied. We observe how the variable
input data changes the execution time for execution in local re-
sources, Cloud resources, and collaborative effort. We observe
that, as the data size increases, the execution time increases for
both the framework and the Cloud. As the collaborative frame-
work shares the resources between local and Cloud, it is able
achieve the smallest execution time for , where

is used as the size of input (80 Kb) given to the ap-
plication. However, for input data larger than that the execution
time of local resources is the smallest.
Budget: We compare the performance of the two different

policies considered above (i.e., and ) with
a purely Cloud-based approach on the basis of execution time
and budget.

Simulation Setup: For a fixed data rate of the RF modem
from 0.1 Kb/s and fixed data input size, we observe the exe-
cution time taken by the application and budget in dollars for
executing the application based on the two policies.

Observations: In Fig. 5(c), we see as expected that
the execution is lowest for Policy– of our collab-
orative framework, as opposed to only Cloud resources,
which has the higher execution time than Policy— .
Policy– has lower cost and time as it shares tasks
with local resources with no cost and lower communication
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Fig. 5. (a) Comparison of execution time of water quality monitoring application when executed at only local resources, only Cloud resources, and shared between
Cloud and local resources (Policy-MinEnergy). We vary the data rate of the RF modem to study the performance. (b) Comparison similar to (b) by varying the
input data size of the application at a fixed data rate (1 Kb/s). (c) Variation of execution time and budget for only Cloud resources and our framework for different
policies (MinEnergy and MinBudget). The data rate is fixed at (0.1 kb/s).

cost. However, if the bandwidth decreases further, the exe-
cution time will increase further, as shown in Fig. 5(a), and
the framework might opt for doing tasks only in the local
resources. However, as the data rate increases all the tasks will
be send to the Cloud incurring lower execution time but higher
cost. With Policy– we get the lowest budget with
highest execution times as it selects cheaper VMs with higher
execution times. We see that Policy– consumes 47%
more time than Policy– ; however, Policy–
gives 61% savings in budget for using Cloud resources. Both
the techniques perform significantly better than completely
offloading to the Cloud.

VI. CONCLUSION

We exploited the heterogeneous sensing, computing, commu-
nication, and storage capabilities of mobile and fixed devices in
the field as well as in remote Clouds to form a loosely coupled
mobile/fixed cloud. We presented a resource-provisioning en-
gine that allocates computational tasks between the Cloud and
the local resources based on the objective of minimization of
execution time or the price of the executing the application. We
presented via simulations the benefits of the collaboration be-
tween the Cloud and local resources for water-quality moni-
toring application using autonomous underwater vehicles. We
demonstrated how the accuracy of a task can be improved by
adding additional information in the Cloud, specifically how the
accuracy of reconstruction of a phenomenon can be improved
by also considering ocean currents. We demonstrated the bene-
fits of our resource provisioning engine with respect to a purely
local and centralized approach.
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