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Abstract—Mobile platforms are becoming the predominant medium of access to Internet services due to the tremendous increase in their
computation and communication capabilities. However, enabling applications that require real-time in-the-field data collection and
processing usingmobile platforms is still challenging due to i) the insufficient computing capabilities and unavailability of complete data on
individual mobile devices and ii) the prohibitive communication cost and response time involved in offloading data to remote computing
resources such as cloud datacenters for centralized computation. A novel resource provisioning framework for organizing the
heterogeneous sensing, computing, and communication capabilities of static andmobile devices in the vicinity in order to forman elastic
resource pool—a hybrid static/mobile computing grid (also called a loosely-coupledmobile device cloud)—is presented. This local
computing grid can be harnessed to enable innovative data- and compute-intensivemobile applications such as ubiquitous context-aware
health andwellnessmonitoring of the elderly, distributed rainfall and flood-risk estimation, distributed object recognition and tracking, and
content-based distributedmultimedia search and sharing. In order to address challenges such as the inherent uncertainty in the hybrid grid
(in terms of network connectivity and device availability), the proposed role-based resource provisioning framework is impartedwith
autonomic capabilities, namely, self-organization, self-optimization, and self-healing. A thorough experimental analysis aimed at verifying
and demonstrating the benefits brought by autonomic capabilities of the framework is also presented in detail.

Index Terms—Autonomics, uncertainty, mobile clouds, mobile grids, self-organization, self-optimization, self-healing
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1 INTRODUCTION

THE computation and communication capabilities of
mobile devices such as smart phones, tablets, netbooks,

and laptops have improved tremendously due to the advan-
ces in microprocessor, storage, and wireless technologies. It
has been projected that, by 2015, mobile devices will surpass
wired devices as the most preferred medium of access to the
Internet. These changes will have a significant impact on the
underlying resource pool in distributed computing para-
digms that use Internet-connected devices, volunteered by
their owners, as a source of computing power and storage
[1]. Also, as more and more of these mobile devices are cou-
pled with in-built as well as external sensors capable of
monitoring ambient conditions, acceleration, orientation,
gravity, etc., and Global Positioning System (GPS) receivers,
they can provide spatially distributed measurements
regarding the environment in their proximity. In addition,
advances in the field of wireless sensors has led to the devel-
opment of compact sensor nodes capable of communicating
with other mobile devices and of capturing a wide variety
of sensor data—from biomedical (e.g., electrocardiogram,
galvanic skin response, oxygen saturation) to kinematic
(e.g., acceleration, angular velocity).

This paper presents a resource provisioning framework
for organizing the heterogeneous sensing, computing, and
communication capabilities of static and mobile devices in
the vicinity in order to form an elastic resource pool—a
hybrid static/mobile computing grid. In literature, such a
resource pool is also referred to as a “loosely-coupled” mobile
device cloud and hence, in this paper, we use the terms mobile
cloud and mobile grid interchangeably. This local computing
grid can be harnessed to enable innovative data- and
compute-intensive distributed mobile applications such as ubiq-
uitous context-aware health and wellness monitoring of the
elderly, rainfall and flood-risk estimation, estimation of pol-
lution level using real-time air-quality measurements, object
recognition and tracking, and content-based multimedia
search and sharing. The response time, quality, and rele-
vance of such mobile applications, which rely on real-time
in-the-field processing of locally generated data, can be drasti-
cally improved using our envisioned framework. Currently,
the primary impediments to real-time in-the-field data proc-
essing are, 1) insufficient sensing and computing capabili-
ties on individual mobile devices, which prevents them
from producing meaningful results within realistic time
bounds in isolation, and 2) the prohibitive communication
cost and response time involved in enabling such data-
intensive applications using the wired-grid-computing and/or
cloud-computing approaches alone [2]—in which computa-
tion and storage are fully offloaded to remote computing
resources on the Internet.

Resource provisioning in the aforementioned computing
grid is a challenging problem due to inherent uncertainty in
terms of network connectivity and device availability. This
uncertainty can be attributed to unpredictable node mobil-
ity, varying rate of battery drain, susceptibility to hardware
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failures, and lack of a priori knowledge about the applica-
tion performance on different mobile hardware and soft-
ware platforms. In order to address the research challenges
associated with reliable hybrid grid coordination and appli-
cation performance (in terms of response time) under uncer-
tainty, we impart our proposed framework with autonomic
capabilities—self-organization, self-optimization, and self-
healing. Applications are made up of one or more work-
loads, which is usually composed of multiple tasks whose
order of execution is specified by a workflow. Tasks here
may refer to data-processing and/or data-analysis opera-
tions with different computational, storage, and deadline
requirements. Applications may exhibit data parallelism (in
which data is distributed across different parallel comput-
ing nodes that perform the same task) or exhibit task parallel-
ism (in which parallel computing nodes may perform
different tasks on the same or different data).

In our solution, the entities of the hybrid grid may at any
time play one or more of the following three logical roles as
shown in Fig. 1a: i) service requester, which places requests
for workloads that require additional data and/or comput-
ing resources from other devices, ii) Service Provider, which
can be a Data Provider (DP), Resource Provider (RP), or both,
and iii) arbitrator (also typically known as broker), which
processes the requests from the requesters, determines the
set of service providers that will provide or process data,
and distributes the workload tasks among them. Data pro-
viders provide scalar or multimedia data while resource
providers lend their computational (CPU cycles), storage
(volatile and non-volatile memory), and communication
(i.e., network interface capacity) resources for processing
data. The arbitrator—an additional role played by some of
the service providers—is aided by a novel uncertainty- and
energy-aware resource allocation engine, which will distribute
the workload tasks among the service providers. This way,
we ensure that the data providers do not drain valuable
energy and, in turn, maximize their lifetime as the sensor
data that they provide is crucial for enabling data-driven
mobile applications.

Related work: Fig. 1a depicts the entities of a hybrid grid
enabling an ubiquitous healthcare application that relies on
processing collected biomedical data in-the-field for real-time
physiological monitoring. Prior research efforts—specifically,

in the field of mobile grid computing—aimed at integrating
mobile devices into the wired-grid [3], [7], [9] and cloud-com-
puting infrastructure [4], [5], [12], [13] mainly as service
requesters. On the other hand, research efforts in the field of
delay-tolerant distributed computing has led to the develop-
ment of a new paradigm called Opportunistic Computing
(OC) [14], [15], which depends entirely on direct encounters
to opportunistically share data and computing resources. Dif-
ferently from these two efforts, we organize the mobile devi-
ces into a heterogeneous resource pool (with entities playing
one or more logical roles—arbitrators, service requesters, ser-
vice providers) and also address uncertainty-aware resource
management for ensuring application Quality of Service
(QoS) even in highly dynamic and unpredictable environ-
ments. In the table depicted in Fig. 1b, we summarize previ-
ous work in the field of mobile grid computing and position
our uncertainty-aware resource provisioning framework for
real-time in-the-field data processing in heterogeneous
mobile computing grids. In Appendix A of the supplemen-
tary material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2014.2345057, we discuss the state of the art in
management of mobile grids in detail and motivate the need
for our approach.

Our resource allocation engine leverages long-term statis-
tics regarding the dynamics of the underlying resource pool
and utilizes the novel concept of application waypoints
to monitor continuously the effect of the aforementioned
uncertainties on application performance. Specifically, the
long-term statistics are exploited to minimize the effect
of uncertainty arising from inaccurate estimates of device
availability (due to unpredictable mobility), while the appli-
cation waypoints are used to minimize the effect of uncer-
tainty arising out of inaccurate estimates of application
performance (due to unpredictable battery drain and
resource utilization). Waypoints also impart the desired
robustness under device failures and help us eliminate
assumptions such as existence of accurate models for appli-
cation performance on different mobile hardware and soft-
ware platforms. Our major contributions include:

! A role-based and uncertainty-aware architectural
framework for imparting the self-organization

Fig. 1. (a) Autonomic resource provisioning enabling ubiquitous healthcare; (b) summary of related work.
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capability, i.e., for handling service discovery and
service request arrivals as well as for task distribu-
tion and management.

! A novel energy- and uncertainty-aware resource
allocation engine for imparting self-optimization
and self-healing properties, i.e., for allocating the
workload tasks optimally among the computing
devices and to ensure application QoS even under
uncertainties.

! A thorough performance analysis of our resource
provisioning framework for mobile grids through
experiments on a prototype testbed of Android- and
Linux-based mobile devices as well as simulations.

This paper is an extended version of [16] inwhichwe dis-
cuss only a subset of the autonomic capabilities. The remain-
der of this paper is organized as follows. In Section 2, we
present our autonomic resource provisioning framework
for mobile grids and provide details on how we impart the
self-organizing, self-optimizing, and self-healing proper-
ties. In Section3,wedescribe our experimentalmethodology
and results. Finally, in Section 4,wepresent our conclusions.

2 PROPOSED SOLUTION

Our contributions are geared towards imparting autonomic
capabilities to the resource management framework. Mech-
anisms for service discovery and workload management
will impart the self-organization capability. The energy-
aware resource provisioning engine will impart self-optimi-
zation, while the uncertainty handling mechanism will
bestow the self-healing capability.

2.1 Role-Based Architectural Framework
The self-organization capability (for handling service dis-
covery and service request arrivals as well as for task distri-
bution and management) is imparted by the role-based
architectural framework. It also facilitates interactions
among the mobile entities for coordination and seamless
switching among the three logical roles, namely, service
requesters, service providers, and arbitrators.

Service discovery: Service discovery at the arbitrators is
achieved through voluntary service advertisements from
the service providers. Service advertisements will include
information about the current position, amount of comput-
ing (gcpu

n , in terms of unutilized CPU cycles [percent]), mem-
ory (gmem

n ½Bytes]), and communication (gnetn ½bps]) resources,
the start (tinn ) and end (toutn ) times of the availability of those

resources, and the available battery capacity (eadvn ½Wh]) at
each SP n. The arbitrator is aware of the instantaneous
power drawn by the workload tasks of a specific application
when running on a specific class of CPU and memory
(together given by ccomp

n ½W]) as well as network (cnetn ½W])
resources at each SP as the information about the different
types of devices is known in advance. Even though a ran-
dom arbitrator assignment can be adopted, we advocate the
use of a distributed self-election mechanism for assigning
the appropriate number of arbitrators. Details of the same
are available in Appendix B of the supplementary material,
available online.

Workload management: Each arbitrator is composed of
two components, namely, workload manager and scheduler/

optimizer, as shown in the top of Fig. 1a. The workload man-
ager tracks workload requests, allocates workload tasks
among service providers, and aggregates results. The opti-
mizer identifies the number of service providers available
for the requested duration and determines the optimal dis-
tribution of workload tasks among them. In this paper, we
focus on uncertainty-aware task allocation for data-parallel appli-
cations only. For a discussion on task allocation for task-par-
allel applications refer to our contributions in [17]. Data-
parallel applications are also referred to as “embarrassingly
parallel” (map-reduce-type) applications in which the inde-
pendent set of tasks (either homogeneous or heterogeneous)
can be performed in parallel. The results of the tasks are
fused for generating the final result.

The optimizer shares the workload submitted by the data
providers among the available service providers based on
one of several possible policies. The different tasks of a
workload may be distributed among the available service
providers based on an energy-aware policy that aims at mini-
mizing the maximum battery drain. This can be achieved
throughminimization of computational load on each individ-
ual service provider by exploiting parallelismwhile incurring
a very low communication cost. Another policymay just place
emphasis onminimizing the response time without consider-
ing battery drain.

2.2 Energy-Aware Resource Allocation
Here, we explain our resource allocation engine, which
implements one of the aforementioned policies (energy
aware) for hybrid grids in detail. The following is the
sequence of events happening at one of the arbitrators. Simi-
lar events happen simultaneously at the other arbitrators in
the computing grid. When a service requester needs addi-
tional data or computing resources, it submits a service
request to the nearest arbitrator and also specifies dmax ½s#,
the maximum duration for which it is ready to wait for a
service response. The arbitrator extracts the following infor-
mation based on the service advertisements: the devices’

(service providers’) capability, G
x ¼ fgx

ng1%N , where x ¼
cpu;mem; net; the associated costs, C

comp ¼ fccomp
n g1%N and

C
net ¼ fcnetn g1%N ; the devices’ availability, T

in ¼ ftinn g1%N and

T
out ¼ ftoutn g1%N ; and their battery status E

adv ¼ feadvn g1%N . The
variables that the optimization problem has to find are

Find: A;D
d
;D

s
: (1)

Here, A ¼ faijgN%N conveys the associativity of data pro-
vider i with SP j, which is determined by the arbitrator,

D
d ¼ fddng1%N ½h# conveys the duration for which the services

of each SP will be used for data collection, and D
s ¼

fdsng1%N ½h# conveys the duration for which the resources of
each SP will be used for computation (cpu, mem, and net)
and/or for multi-hop communication (net) as a relay node.
In this formulation, the objective of the optimization prob-
lem in (2) is the maximization of minimum residual battery
capacity at all the SPs,max minn eresn —where eresn ½Wh# is com-
puted as in (3)—while ensuring that the service response is
delivered within dmax. This objective maximizes the lifetime
of every single SP and, thus, maintains the heterogeneity of
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the resource pool for longer periods. The set of SPs and the
duration for which each of their capabilities are availed will
be determined by considering the tradeoffs among the cost
(in terms of battery drain) edatan ½Wh] (4) for transferring the
data locally from data providers to the resource providers,
the computational cost ecomp

n ½Wh] (5) for availing the
computational capabilities of the resource providers for ser-
vicing the request and for aggregating and generating the
result.

Maximize: min
n

eresn ; (2)

where; eresn ¼ eadvn &
!
edatan þ ecomp

n

"
; (3)

edatan ¼ ddn ( c
net
n ; (4)

ecomp
n ¼ un ( dsn ( c

comp
n : (5)

In (3), edatan þ ecomp
n is the amount of battery capacity drained

at each service provider n; ddn for a service provider n
depends on the amount of data it has to transmit (v ½Bytes]
as a data provider) or aggregate (v (

PN
i¼1 ain ½Bytes] as a

resource provider), and the availed communication capabil-
ity, given by,

ddn ¼
f
!
v; gnetn

"
if un ¼ 0;

f

#
v (

PN
i¼1 ain; g

net
n

$
if un ¼ 1:

8
<

: (6)

For simplicity, v is considered to be the problem size of a
trivial task and each data provider provides the same
amount of data. However, this is easily generalizable to a
case where each data provider provides a different amount
of data, in which case the problem sizes of each trivial task
will be different. Function fðÞ monotonically increases as
the amount of data to be transmitted or received increases;
dsn for a service provider n depends on the amount of data it
has to process and the availed computing capabilities speci-
fied by gcpu

n and gmem
n , given by,

dsn ¼ g

#
gcpu
n ; gmem

n ;v (
XN

i¼1

ain

$
: (7)

Function gðÞ monotonically increases with the amount of
data to be processed. The constraints to the optimization
problem are, 8n ¼ 1 . . .N ,

sn + un; 0 , ddn; d
s
n; (8)

dsn , min
%
toutn ; tnow þ dmax

&
&max

%
tnow þ ddn; t

in
n

&
; (9)

ddn ( c
net
n þ un ( dsn ( c

comp
n , eadvn : (10)

Constraint (8) ensures that only a resource provider is cho-
sen to perform the computing. Constraint (9) ensures that
the consumer’s deadline for service response is met while
also utilizing a service provider only for the duration for
which its services are advertised to be available. Constraint
(10) ensures that the battery capacity is not exceeded.

2.3 Uncertainty Awareness

The resource allocation engine of our proposed in-situ data
processing system is capable of handling uncertainties
in the highly dynamic hybrid heterogeneous computing
environment. We identify the different sources of uncertain-
ties and bestow the resource allocation engine with the
desired properties to guarantee application QoS (in terms of
response time) even under those uncertainties.

Sources of uncertainty: Inaccurate estimation of the availability
(duration) of SP is a major source of uncertainty that results in
a large number of incomplete workload task migrations. The
duration of availability specified in the service advertise-
ments is based on the battery drain estimates and may not
accurately reflect the duration for which the service provider
will be associated with the arbitrator. One or more of the SPs
may lose network connectivity to the arbitrator or go offline.

Inaccuracy in the estimation of task completion times—
function gðÞ in the aforementioned optimization problem—
is one of the sources of uncertainties that affect application
QoS. This is especially true when the behavior of a work-
load task (execution time and resource utilization) is not
known in advance at the arbitrator. The uncertainty can be
reduced to a certain extent in our application scenario by
profiling the behavior of the workload in advance. However,
some models exhibit radically different behaviors depending on the
type of inputs (e.g., sorted/unsorted, dense/sparse).

Uncertainty in workload completion within the response-
time bound arises when a SP is experiencing an unexpected
increase in the rate of battery drain (and runs out of energy) due
to any of the additional critical operations that it may be per-
forming at the same time as the workload task. The optimiza-
tion problem may also over- or under-provision computing
resources due to an inaccurate estimate of task completion
time. The former would result in unnecessary wastage of
energy (battery drain) while the latter would result in viola-
tion of QoS. While the arbitrator can be made aware of any
problems at the SP using feedback, handling situations such
as loss of network connectivity and hardware failures is a
challenging task.

Uncertainty-aware self-organization: In order to impart the
uncertainty-aware self-organization capability to the
proposed resource-allocation framework, we designed
mechanisms that help the arbitrator extract the following
long-term statistics from the underlying resource pool: the
average arrival (joining) rate of SPs ( eW ), the average SP

availability duration ( eT ), and the average number of SPs

associated with the arbitrator at any point in time ( eN). The
relationship among these three long-term statistics is given

by Little’s law [18], eN ¼ eW ( eT . The arbitrators update con-
tinuously these statistics and share at least two of the three
aforementioned averages with its successors if and when an
arbitrator’s handoff happens. Knowledge of these average
statistics helps the arbitrators assess the churn rate of SPs.
Churn rate is a measure of the number of service providers
moving into or out of an arbitrator’s resource pool over a
specific period of time. Note that the arbitrators need not
extract or be aware of the underlying probability distribu-
tion of service provider arrivals or of availability durations.
The long-term averages, which are easy to acquire and
maintain, are sufficient.
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Churn rate of SPs will be different in different geo-
graphic location. For example, the churn rate of SPs at a
shopping mall is far greater than the one at a coffee shop.
Also, at a particular location (say, the coffee shop), the
churn rate can vary over time (e.g., depending on the time
of the day). When the churn rate is high, i.e., the average
duration of SP availability is low, the percentage of poten-
tially costly migrated workload tasks will be high if the
resource-allocation engine does not possess uncertainty
awareness. When the long-term average of availability
duration is not taken into account at the arbitrator and
when the durations advertised by the SPs are used as con-
straints in the resource allocation problem, it results in a
mismatch between the ground reality and the optimization
at the arbitrator. However, our framework with uncer-
tainty awareness achieves a smooth degradation (if any) in
QoS (because of the small number of task migrations)
when churn rate increases as it effectively exploits the
knowledge gathered over time.

2.4 Uncertainty Handling
To ensure application QoS under all of the aforementioned
circumstances, we introduce the novel idea of application
waypoints, at which the SPs report to the arbitrator with
intermediate results and their progress. Waypoints enable
the arbitrators to estimate the residual tasks’ execution time
for each SP. If an arbitrator does not receive any waypoints
from a SP, it marks that SP as failed after a timeout and
assigns the incomplete tasks to one or more backup SPs. If
an arbitrator receives waypoints from a SP at a lower rate
than the expected (from offline application profiling
detailed in Appendix C in the supplementary file, available
online), it has to determine when and how to intervene, i.e.,
when to relieve the slow service provider of some tasks and
which SPs to use as backup. The details of our proposed
reactive measurement-based self-healing mechanism for
heterogeneous mobile computing grids follow.

Application waypoints: Once the arbitrator assigns sets of
tasks to the different SPs, it continuously tracks their prog-
ress using application waypoints. In data-parallel applica-
tions, the completion of every single workload task is used
as a waypoint and as an opportunity to collect intermediate
results at the result aggregator (in some cases, the arbitrator
itself). Without any loss in generality, let us assume that the
tasks in the data-parallel application are homogeneous. Let
vn be the rate of application waypoints from a SP n, which is
estimated using information obtained during application
profiling and during resource allocation. The number of
assigned tasks, the time taken for computation dsn, and the

time taken for communication dds at the different SPs are
taken into account in this estimation procedure. Therefore,
the arbitrator has an initial estimate of the completion time
tendn at n.

As shown in Fig. 2a, every service provider has a dead-
line t0 þ dmax

n for the completion of all the tasks that it has
been allocated. Here, dmax

n < dmax in order to give a margin
for result aggregation. As the actual rate of waypoints v0n
from the service provider n will be different from the initial
estimate vn, the arbitrator should be able to absorb this vari-
ation and react appropriately depending on where the pro-

jected completion time tend
0

n of all the allocated tasks lies in
relation to the individual service provider deadline tmax

n .
We identify four end zones, namely, Blue, Green, Amber, and
Red, as depicted in Fig. 2: the arbitrator’s reaction will
depend on the zone in which the projected completion time

tend
0

n falls in. This projection is straightforward as the arbitra-
tor is aware of the number of tasks allocated to each service
provider and of the corresponding v estimates.

Red zone (high risk/failure): When v0n - vn and tend
0

n falls in
the Red zone (beyond tmax

n ), it means that the SP n is com-
pleting the allocated tasks very slowly or the waypoints are
not received at the arbitrator. The arbitrator determines that
the particular SP is unable to complete all the tasks that

Fig. 2. Illustration of the use of application waypoints to report progress of workload task completion at a service provider n. (a) shows the estimated
trajectory of task completion and the relative position of the estimated completion time tendn with respect to the four end zones Blue, Green, Amber,
and Red. The projection at time tnow falls in the Amber zone triggering a partial reallocation of tasks from this troubled service provider; (b) shows the
new estimated and the actual trajectory of task completion at the troubled service provider after it has been relieved of some tasks. The SP is able to
complete its allocated tasks with the service providers’ deadline tmax

n . If the projection had fallen in the Red zone, it would have triggered a full reallo-
cation, i.e., all the incomplete tasks at the service provider.
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have been allocated to it within tmax
n and reallocates “all” the

residual tasks to backup SPs. There is, however, a possibility
that this scenario arises due to a very poor estimation of vn,
in which case the profile needs to be updated. This will be
done only after ensuring repeatability of this issue.

Amber zone (low risk): When v0n < vn and tend
0

n falls in the
Amber zone (as shown in Fig. 2a), it means that the SP n is
completing the allocated tasks slower than what was esti-
mated during profiling. The Amber zone is bounded by tmin

n

and tmax
n . Even though the projected completion time falls

within the SP deadline, the uncertainty is deemed unaccept-
able by the arbitrator, which reallocates a “fraction” of the
residual tasks to backup service providers. The arbitrator
wants the lower bound of the Amber zone tmin

n to be as close
as possible to the deadline tmax

n so to absorb the effect of
acceptable variation in v0n from vn. On the otherhand, the arbi-
trator also takes into account the capabilities of the backup
resource pool to complete the reallocated tasks within the
deadline. Therefore, dmin

n —which determines tmin
n —is a func-

tion of multiple factors, i.e., dmin
n ¼ Fðvn; v0n; eN; eT; tendn ; tmax

n Þ.
When the average size of the resource pool eN and the average

availability duration eT of the resource pool are large, dmin
n is

large (Amber zone is smaller), i.e., the arbitrator canwait lon-
ger before intervening as the resources at its disposal are
capable of quickly finishing the incomplete tasks after a real-
location is triggered. On the contrary, when the resources at
the disposal of the arbitrator are limited, the Amber zone is
larger as the arbitrator and the resource pool needmore time
to react after a reallocation is triggered.

Green zone (no risk): When tend
0

n falls in the Green zone,
it means that the current operating conditions at the SP
is not significantly different from the one during profil-
ing. This rate of progress is close to the desired trajectory
for workload task completion and the arbitrator does not
react in such a scenario. In other words, the level of
uncertainty is acceptable to still complete all the allo-
cated tasks within tnmax.

Blue zone (no risk but wasteful): When v0n > vn and tend
0

n falls
in the Blue zone, it means that the SP n is completing the
allocated tasks faster than what was estimated during pro-
filing. This may happen when the profiling is done under
non-ideal conditions. The arbitrator uses this opportunity to
tune the application profile for the specific hardware and
software platform on the service provider n. In some cases,
the arbitrator may deem it undesirable if additional energy
(battery drain) is being used up for an unnecessary earlier
completion of the task and may reallocate the tasks to other
service providers to avoid energy wastage. The upper
bound for Blue zone tmin

n is a tunable parameter that the
application developer can set. In our prototype, we set
tmin
n ¼ tendn & dmin

n .
While the dynamics are presented at the SP level in

Fig. 2, the same phenomenon can be explained at the arbi-
trator level by combining waypoint information from all the
SPs. Application waypoints could be also seen as indicators
of progress similarly to the approach described in [19],
which provided a general-purpose API and runtime system
to implement progress and performance indicators of indi-
vidual high-performance computing applications. Similar

to the waypoints discussed in this paper, the main purpose
of the indicators was improving scheduling policies based
on dynamic load-balancing techniques and self-tuning in
runtime. The concepts and interfaces proposed in [19] can
be extended to implement waypoints also at the mobile-OS
layers and not just at the application layer as we do now.
Such a general-purpose API, in conjunction with check-
pointing [6], will also enable extension of the same princi-
ples for self-healing in task-parallel applications with
waypoints built “inside” the tasks.

Reallocation strategy: In response to a partial or full
reallocation trigger raised in the Amber or Red zone, the
arbitrator provisions additional computing resources and
reallocates the workload task(s) so to ensure that the work-
load is completed within the specified deadline. In contrast
to the energy-aware optimization approach for initial task
allocation, the reallocation strategy is a heuristic aimed at
minimizing the execution time of residual tasks. First, this
shift from optimization to heuristic is motivated by the
need to react fast. Second, the need to reprovision resources
and to reallocate tasks arises due to inaccuracies in the mod-
els (for task execution time, service provider availability)
used in the optimization approach. Therefore, during recov-
ery, while the models are being tuned for future use, a fast
heuristic approach is employed.We propose a best-fit heuristic
to reallocate the incomplete tasks to the backup service providers.

Backup resource pool: The backup pool is first created and
the tasks are allocated to these SPs in pool using the best-fit
allocation principle [20]. The eligibility criteria for a SP to be
part of the backup pool is tstartn þ eT > tmax. The eligible ser-
vice providers are then arranged in the decreasing order of
i) the rate of application waypoints (primary key) and
ii) residual availability duration (secondary key). This
ordering gives preference to faster SPs with longer average
availability duration.

Task allocation: The fraction of tasks that have to be reallo-
cated depends on the zone in which the projected comple-
tion time lies. When tend

0
n is in the Red zone, “all” the

incomplete tasks at the SP n are reallocated; whereas when

tend
0

n is in the Amber zone, a “fraction” of tasks at the service
provider n are reallocated. This fraction is a tunable param-
eter that can either be set to a predefined value or be set on
the fly based on the capability of the backup pool (size as
well as heterogeneity). In our prototype, we set the fraction
to be the nearest quartile of the number of incomplete tasks.

The fit criteria in the best-fit heuristic is maximization
of the minimum residual idle time across SPs after the
allocation of all incomplete tasks. The philosophy behind
this reallocation approach is load balancing in the backup
resource pool so to minimize makespan while at the same
time using as few resources as possible. This reallocation
does not incur significant computational overhead as the
size of the allocation problem is very small. If N is the
number of service providers in the backup pool and M is
the number of tasks to be reallocated, then the time com-
plexity is given by OðM ( logM þM (NÞ, where the first
component is due to the sorting procedure. Also, note
that our heuristic is different from the best-fit-decreasing
algorithm for bin packing as we order the bins (SPs) and
not the objects (tasks).
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3 EVALUATION

We have implemented a small-scale prototype of the pro-
posed autonomic framework and performed an empirical
evaluation. We have also used simulations to show the
scalability of the proposed framework beyond 10 nodes
(the size of our testbed). In the following sections, first, we
present details about our testbed and experiment methodol-
ogy. Then, we discuss specific experiment scenarios and the
results that demonstrate the uncertainty-aware self-organi-
zation, self-optimization, and self-healing properties of our
proposed framework.

3.1 Testbed and Experimental Methodology
Heterogeneous devices: The testbed consists of Android- and
Linux-based mobile devices with heterogeneous capabilities
(summarized in Table 1). In our prototype, communications
among the master and workers as well as among the opti-
mizer and workers happen over a scalable peer-to-peer con-
tent-based coordination space [21]. The messages in this
coordination space are constructed in the form of tuples
(XML strings).

The workload: The mobile application that we used for
our experiments is distributed object recognition. In this
application, the service requester (which is also the data
provider) submits an image of any object that needs
to be recognized while also specifying a deadline. The
predominant workload in this application is matrix multi-
plication and the most fundamental workload task is vector
multiplication, which is assigned to the different service
providers. Distributed object recognition is representative
of the wide range of data-parallel applications that our
framework can support. Table 1 shows the time taken by
the different mobile devices to complete all the workload
tasks when operating in isolation. As this profiling was
done under controlled conditions, the variation in the task
completion times was negligible. For near-real-time perfor-
mance, the execution time needs to be in the order of tens of
seconds and this clearly motivates the need to divide the
tasks among SPs in the vicinity for speed up.

Application profiling: As the objective of the optimization
problem is maximization of minimum residual battery capac-
ity, the amount of battery drain in service providers as a result
of running workload tasks needs to be calculated. However,

the usage of actual Watt-hour (Wh) values would result in
unfair usage of resources in devices with a higher battery
capacity. Hence, in order to deal with the heterogeneity of
mobile devices with different battery capacities (shown in
Table 1), in our prototype the optimization problem uses the
battery capacity percentage tomake allocation decisions. Using
percentage values instead of actual Wh values ensures fair-
ness in usage of the heterogeneous pool of service providers.
In order to optimize allocation decisions, it is important to get
a good estimate of the instantaneous power drawn in the
mobile device while running a workload task. Details of
the procedure we followed to obtain the completion time and
the power consumption profiles are available in Appendix C
of the supplementarymaterial, available online.

3.2 Uncertainty-Aware Self-Organization
Simulation: We performed a simulation to ascertain the gain
in terms of reduction in number of workload task migrations
that can be achieved through uncertainty-aware self-organi-
zation. We performed simulations under different opera-
tional scenarios with different SP churn rates. To achieve
different churn rates, we progressively decreased the aver-
age time a SP is associated with an arbitrator. The four sce-
narios in Fig. 3a represent a progressive increase in the churn
rate of the underlying resource pool (with a corresponding
decrease in average duration of availability). The number
(15 in total) and combination of SPs in the mobile grid, the
number of workload tasks, and the deadlines remain the
same for all the four scenarios.We used percentage of migrated
workload tasks to determine the effectiveness of uncertainty
awareness. In order to ensure that the uncertainty awareness
capability is not dictated by any particular distribution of
SP-availability duration, it was picked at random based on
i) Normal distribution (with mean, m ¼ 180; 150; 120; 90 s
and standard deviation, s ¼ 60 s) and then on ii) Weibull
distribution (with scale, ! ¼ 200; 175; 150; 125 and shape,
k ¼ 4). Normal distribution is used for its generality while
Weibull distribution is the most popular choice amongst sta-
tisticians performing reliability (or survivability) analysis
[22]. In order to give statistical relevance to our experiments,
we performed multiple trials (by picking availability dura-
tions from the aforementioned distributions) until we
achieved a very small relative confidence interval (less than
10 percent).

TABLE 1
Heterogeneity of Computing Devices in the Testbed

Samsung Galaxy
Tab

Motorola
Atrix 2

Samsung
Galaxy S

LG Optimus HTC Desire
HD

Dell Netbook Dell Inspiron
Laptop

CPU 1 GHz Dual-core
ARM

1 GHz Dual-
core ARM

1 GHz ARM 600 MHz ARM 1 GHz ARM 1 GHz Atom 2 GHz
Dual-core Intel

Memory (RAM) 1 GB 1 GB 512 MB 512 MB 786 MB 1 GB 2 GB

Network 802.11 b/g/n,
Blue tooth

2 G, 3 G, 4 G,
802.11 b/g/n,
Bluetooth

2 G, 3 G, 802.11
b/g/
n, Bluetooth

3 G,
802.11 b/g,
Bluetooth

2 G, 3 G, 802.11
b/g/n,

Bluetooth

802.11 b/g/n 802.11 b/g,
Bluetooth

Battery capacity 7,000 mAh 1,740 mAh 1,500 mAh 1,500 mAh 1,400 mAh 4,500 mAh 5,000 mAh

Battery voltage 4 V 3.8 V 3.8 V 3.7 V 3.8 V 11.1 V 11.1 V

Workload
completion time

150 s 300 s 390 s 590 s 340 s 100s 35 s
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Fig. 3a shows how uncertainty awareness at the arbitrator
(knowledge of the long-term average of SP availability) helps
reduce the number of workload task migrations when the
SP-availability duration follows Weibull distribution. Also,
another advantage of uncertainty awareness is that it helps
decrease churn rate, especially SP departures caused by
device users opting out of the application due to undesired
battery drain. The SPs will not experience undesired and
unfair battery drain, especially the more powerful devices,
which are usually preferred for strict deadline requirements.
Performance under normally distributed SP-availability
duration is available in Appendix D of the supplementary
material, available online.

3.3 Self-Optimization
Competing approaches: To assess the self-optimization capa-
bility of our framework, we compare it against two compet-
ing approaches, i) Round-robin, in which the workload tasks
are divided equally among all the available service pro-
viders and ii) a Pull-based First-Come-First-Served
(P-FCFS) [23], in which SPs pull from a bag of tasks at the
arbitrator whenever they become idle, work on them, and
report the result. Round-robin is chosen for comparison to
show the gains (in terms of successful workload comple-
tions and battery drain) that can be achieved by exploiting
the heterogeneity in computing capabilities of SPs. P-FCFS
inherently exploits the heterogeneity in computing capabili-
ties. However, it results in progressively faster devices com-
pleting a correspondingly higher number of tasks over
time. It is also robust to SP failures or loss in connectivity as
it is purely pull based. However, due to lack of self-optimi-
zation, there is usually unfair battery drain at the SPs. We
performed both experiment and simulation to assess the
self-optimization capability.

Experiment: We used three different service providers—a
Samsung Galaxy Tab, a Motorola Atrix 2, and a HTC Desire
HD—with significantly different computational capabilities
and battery capacities (as shown in Table 1). The workload
tasks are divided among these service providers based on
the result of our resource allocation engine (with a deadline
of 100 s) as well as on the two aforementioned competing
scheduling mechanisms. The results in Fig. 3b were
obtained from 100 consecutive runs of the same workload
on the service providers (to achieve a significant battery
drain).

While Round-robin is the slowest of the three as it does
not identify and exploit the heterogeneity of the available

SPs in terms of their computational capabilities, P-FCFS is
the fastest as more tasks are completed by faster devices.
Our framework meets the specified deadline by exploiting
the heterogeneity of the SPs like P-FCFS. However, the
main difference in performance between our solution and
P-FCFS as shown in Fig. 3b is that P-FCFS does not appreci-
ate the heterogeneity of devices in terms of battery capacity
resulting in asymmetric battery drain.

Simulation: In order to show the scalability of the pro-
posed resource-allocation engine and its performance
under difference operational scenarios (in terms of number
and combination of SPs), we performed a simulation to
ascertain the fairness in battery usage across all SPs when
each of the three task-scheduling mechanisms are
employed. We used Jain’s fairness index (1 being the highest
and 0 being the lowest) as the measure of fairness. The four
scenarios in the table in Fig. 3c represent a progressive
increase in the scale and the heterogeneity of the underly-
ing service provider pool as well as the number of tasks.
The scaling up is achieved by increasing the resolution of
the object’s image, which is the input to the object-recogni-
tion application. In order to determine the amount of
battery drain while using the three task-scheduling mecha-
nisms, we simulated 100 consecutive runs (for significant
battery drain) of the workload. This procedure is referred
to as one trial. We in turn performed multiple trials, each
with a different starting condition in terms of available bat-
tery capacities in the service providers.

Fig. 3c shows the average fairness in terms of percent-
age battery usage at the SPs after each trial. In order to
obtain the confidence intervals, we performed multiple
trials until we achieved a very small relative confidence
interval (less than 10 percent). Our proposed solution
achieves the best performance in terms of fairness in
the percentage battery usage as it fully exploits the
heterogeneity of the devices in the resource pool to
successfully complete the workloads within the user-
specified deadline.

3.4 Self-Healing
Experiment: We performed an experiment with four SPs—
two Samsung Galaxy Tabs, a Motorola Atrix 2, and a HTC
Desire HD—to demonstrate the self-healing capability. The
requester-specified deadline is 125 s. One of the Samsung
Tabs was disassociated from the arbitrator at around 30 s to
show how the arbitrator uses the application waypoints to
identify anomalies (such as node failure, disassociation,

Fig. 3. Self-organization. (a) Simulation: Percentage of migrated workload tasks when the resource allocation engine is uncertainty-aware and other-
wise. Self-optimization. (b) Experiment: Performance of the proposed framework (in terms of battery drain [percent]) versus P-FCFS and Round-
robin approaches; (c) Simulation: Performance of the proposed framework (in terms of fairness in battery usage [percent]) across all SPs in compari-
son with P-FCFS and Round-robin approaches.
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etc.) and reacts to it by reallocating incomplete tasks to the
available SPs (backup resource pool).

Initially, the workload tasks are divided among three of
the four SPs based on the result of our resource allocation
engine. Fig. 4a shows the trend of estimated task completion
times as seen at the arbitrator over time. At the beginning,
the task completion times (actual trajectory) follow the
estimated task completion time (estimated trajectory).
However, when one of the SPs fails the trajectory deviates
and the projected completion time of all the tasks falls in the
Red zone. This triggers a full reallocation of tasks to the
backup pool. During this reallocation, the second Galaxy
Tab is used despite its low residual battery capacity as the
other two devices alone cannot complete all the tasks within
the deadline.

Simulation 1: In order to quantify the effect of increasing
churn rates (i.e., high variability in operating conditions) on
the number of successfully completed workloads, we per-
formed a simulation the result of which is depicted in
Fig. 4b. Churn rate was varied by tuning both the average
arrival rate ( eW ) as well as the average availability duration

( eT ) of the SPs. Our proposed framework does not out-per-
form Round-robin under highly stable as well as under
highly varying operating conditions. While comparable per-
formance under stage conditions is self-explanatory, the
workload completions under high churn rate is primarily
due to self-healing (not due to self-optimization). Note that,
however, the proposed framework always out-performs
Round-robin in terms of fairness in percentage battery
usage across all SPs irrespective of the operating conditions.

Simulation 2: In order to quantify the effect of inaccurate
execution-time profiles on the number of successfully com-
pleted workloads, we performed a simulation the result of
which is depicted in Fig. 5. The mismatch of ground truth
with task execution time profiles was simulated by model-
ing the execution time as a uniform random variable. The
lower bound L of the distribution is fixed to 75 percent of
the profile while the upper bound U (percent of the profile)
is progressively increased as shown in Fig. 5. When the
upper bound of the uniform random variable is more than
140 percent of the profile, then the number of successfully
completed workload requests (i.e., service requests) starts
to lower in comparison to P-FCFS. Note, however, that the
proposed solution always out-performs P-FCFS in terms of

fairness in percentage battery usage across all SPs irrespec-
tive of the operating conditions. In both the simulations, the
average number of active SPs was set to 50 and the total
number of workloads was set to 100.

4 CONCLUSIONS

We proposed a novel resource-provisioning framework
for organizing the heterogeneous sensing, computing, and
communication capabilities of static and mobile devices in
order to a form a mobile computing grid. This local com-
puting grid can be exploited to enable the novel mobile
applications that require real-time in-the-field data
collection and processing. We imparted the resource provi-
sioning framework with autonomic capabilities, namely,
self-organization, self-optimization, and self-healing, in
order to be energy and uncertainty aware in the dynamic
mobile environment. We performed a thorough perfor-
mance analysis to verify the autonomic capabilities of the
framework via simulations as well as experimental evalua-
tion on a prototype testbed. The response time, quality,
and relevance of mobile applications, which rely on real-
time in-the-field processing of locally generated data, can
be drastically improved using our framework.
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Fig. 4. Self-healing. (a) Experiment: Demonstration of the use of application waypoints to handle uncertainty (detect node failure) and recover
through re-allocation of resources; (b) Simulation 1. Effect of high SP churn rate on the percent of successfully completed workloads (Round-robin
versus OURS).

Fig. 5. Simulation 2. Effect of inaccurate task execution time profiles on
the percent of successfully completed workloads. U is the upper bound
of task execution time (percent of the profile) modeled as a uniform ran-
dom variable.
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