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Original Article

Thermal anomaly detection in
datacenters

Yang Yuan1,*, Eun Kyung Lee2, Dario Pompili2 and Junbi Liao1

Abstract

The high density of servers in datacenters generates a large amount of heat, resulting in the high possibility of thermally

anomalous events, i.e. computer room air conditioner fan failure, server fan failure, and workload misconfiguration. As

such anomalous events increase the cost of maintaining computing and cooling components, they need to be detected,

localized, and classified for taking appropriate remedial actions. In this article, a hierarchical neural network framework is

proposed to detect small- (server level) and large-scale (datacenter level) thermal anomalies. This novel framework,

which is organized into two tiers, analyzes the data sensed by heterogeneous sensors such as sensors built in the servers

and external sensors (Telosb). The proposed solution employs a neural network to learn about (a) the relationship

among sensing values (i.e. internal, external, and fan speed) and (b) the relationship between the sensing values and

workload information. Then, the bottom tier of our framework detects thermal anomalies, whereas the top tier localizes

and classifies them. Our solution outperforms other anomaly-detection methods based on regression model, support

vector machine, and self-organizing map, as shown by the experimental results.
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Introduction

Cloud computing has emerged as the most popular par-
adigm to meet the increasing demand for faster com-
puting and high storage capacity. This popularity has
resulted in an increase in heat generation in the data-
centers of cloud service providers. The large-scale and
high server densities in these datacenters also increase
the probability of occurrence of anomalous events such
as computer room air conditioner (CRAC) fan failure,
server fan failure, and workload misconfiguration. Such
events will lead to unexpected anomalies like thermal
hotspots and fugues.1 Thermal anomalies can be small
(spanning a few servers or racks) or large (spanning
many servers or racks) in scale, causing severe perfor-
mance degradation of server hardware. Hence, these
thermal anomalies need to be detected, classified (with
respect to the anomalous events that caused them), and
localized for timely remedial action.

As different anomalous events cause different scales of
thermal anomalies, it is difficult to identify them using
few temperature sensors. Thus, in this study, we propose
a novel two-tier hierarchical neural network (NN)

framework using several heterogeneous sensors orga-
nized in a network aimed at detecting, localizing, and
classifying the thermal anomalies. Such heterogeneous
sensors measure the internal and external temperatures
and central processing unit (CPU) fan speed at each
server. The bottom tier of our framework analyzes the
relationship between the sensed data and workload
information on a server using auto-associative neural
networks (AANNs)2 to detect small-scale thermal anom-
alies and also to perform a preliminary classification of
anomalies based on the cause – misconfiguration or fan
failure (the CRAC fan and/or server fans). Then, the top
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tier aggregates the detection results fromdifferent servers
and determines whether there are small- or large-scale
thermal anomalies. As all the unexpected changes of
workload, heat propagation, or environmental temper-
ature have impact on the relationship between the sensed
data, the proposed method can detect various types of
thermal anomalies. Furthermore, a small amount of data
labeled ‘anomaly’ are used to validate this framework
and offer some useful side information, i.e. the specific
reaction of each type of data to different types of anom-
alies. This side information makes it possible to classify
the thermal anomalies.

As the thermal anomalies break the relationship
between the various workloads (the cause of heat gen-
eration) and their corresponding thermal manifesta-
tions (measured using temperature sensors) over time,
the unexpected change of these relationship can repre-
sent the thermal anomalies. Hence, the relationship
between the workload and their thermal manifestations
can be used to detect the thermal anomalies. However,
capturing the relationship encounters two challenges:
(1) the relationship is too complex to be properly
modeled and the model loses the generalization and
(2) events such as misconfiguration, CRAC fan failure,
and server fan failure rarely occur in datacenters, caus-
ing class imbalance in dataset. The class imbalance in
the dataset prevents the computer to explore enough
information from the data collected under abnormal
circumstance.

To overcome the challenges, we propose a datacenter
thermal anomaly detection method based on a machine-
learning technique. Specifically, it aims at one-class clas-
sification. The machine-learning technique used to do
one-class classification can overcome the afore-men-
tioned challenges because (1) the machine learning
allows computers to evolve behaviors based on the
data from the sensors when the computer cannot statis-
tically build themodel and (2) one-class classification can
distinguish one class of samples (normal samples) from
all other possible samples (abnormal samples), by learn-
ing from a training set labeled ‘normal.’ AANN is a
proper tool2 to perform one-class classification because
it can remove the redundant information in the multiple
related data and extract the low-dimensional structure
contained in the high-dimensional data. Therefore, the
AANN is used to detect the thermal anomalies.

The wireless sensor networks enable continuous
monitoring and thermal profiling datacenters using
compact sensors. In this research, the sensor motes
are placed on the outlet of servers and top of the
racks to sense the outlet temperature at the rear side
of racks. The base station receives the signals from the
external sensor and synchronizes them with the mea-
sured internal data such as CPU temperature and CPU
fan speed.

Contributions of this article are as follows.

1. We propose a hierarchical NN framework, which
enables detection and classification of small-to
large-scale anomalies in datacenters using machine-
learning-based technique and data obtained from a
hybrid (external and internal) sensing infrastructure.

2. Not only does our framework detect hardware
anomalies such as server/CRAC fan failures
(as most previous works studied), but it also detects
misconfiguration of servers and attacks, i.e.
misplaced and illegitimate workloads.

The remaining article is organized as follows: first,
the related work is introduced in section ‘Related
work’; the proposed method with a hierarchical frame-
work for thermal anomaly detection is discussed in
section ‘Proposed solution’; the performance of the
proposed method is evaluated and the impact of the
feature selection on the detection performance is dis-
cussed in section ‘Performance evaluation’; and finally,
the completed work and the future work are discussed
in section ‘Conclusions and future work’.

Related work

The methods used in previous research in detecting
thermal anomalies in datacenters include threshold-
based, modeling-based, and machine-learning-based
approaches. The simple threshold-based approach
uses a/multiple threshold(s) to make datacenter operate
in temperature guidelines. This method focuses on
detecting hotspots by setting up thresholds and,
hence, prevents servers from overheating.3 It is worth
noting that the hotspots are not equivalent to the ther-
mal anomalies, because in our context, hotspots are the
places/servers where the temperature overshoots guide-
lines, but thermal anomalies are (more generally) the
places/servers where thermal behaviors in the datacen-
ter are strange – specifically, where the temperature
change does not follow the workloads running on the
servers. Modeling-based approach aims at profiling a
thermal map depending on the layout of datacenter, the
workload distribution, and the cooling setting. Then, it
detects thermal anomalies by evaluating deviations of
the estimated temperatures (from the thermal map)
from actual temperatures.1,4,5 Machine-learning-based
approach is used to learn thermal behaviors in datacen-
ters by training and compare the results with the actual
temperatures to detect the anomalies.

In the study byASHRAETechnical Committees,6 the
thermal guidelines for datacenterwereproposed (i.e. tem-
perature, humidity) to operate datacenters. The similar
threshold-based approach7,8 monitored the measured
temperature and detected anomalies if the temperature

2 Proc IMechE Part C: J Mechanical Engineering Science 0(0)
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exceeds the guideline thresholds. However, this method
cannot follow unique environmental changes in different
datacenters due to the fixed thresholds.

Modeling-based approach models the environment
(i.e. workload distribution, the layout of the datacenter,
and the cooling system parameters) and estimates the
temperature based on simulations. The results of the
simulations are compared with the actual temperature
to detect anomalies. The research described in
Romadhon et al.,9 Wang et al.,10 and Tang11 showed
the performance of using a modeling tool, computation
fluid dynamics tool, to predict the temperature.
However, it requires extreme computation time because
the modeling is computationally intensive. Another
modeling-based method was to employ a regression
model to estimate temperature using historic data.12

The regression model-based approach in Haaland
et al.12 is not computationally intensive, but modeling
the relationship between the thermal features affecting
thermal changes is hard with this method because
regression uses one feature to interpolate data points.

The machine-learning approach aimed at detecting
anomalies by learning relationships among the thermal
features, and learning whether the relationships are
normal or abnormal by labeling. In the study of
Moore et al.,4 a datacenter is divided into contiguous
blocks, and in each block, NN is used to learn thermal
changes in datacenters and predict the thermal changes
with inputs (the workload and power of CRAC unit)
and output (outlet temperature). The differences
between predicted and actual temperatures are used
to detect the thermal anomaly. However, the granular-
ity of the block is too large to detect and localize small-
scale anomalies. In Wang et al.,13 a NN was designed
and with the workload, the temperature at time t as
input and that at time tþ 1 as an output. However,
this approach also requires a stable environment and
the prediction mechanism cannot be adapted by vari-
ous workloads in datacenters.

In the works of Depren et al.14 and Ma et al.,15 other
learning techniques such as self-organizing map (SOM)
and one-class support vector machine (SVM) are
applied in detecting network anomalies. However,
only network intrusion was considered in this article
and no application of SOM and one-class SVMs on
thermal anomaly detection was discussed. The AANN
used in Marwah and Sharma1 is a promising machine-
learning technique since it can explore the low-dimen-
sional structure contained in the multiple features
collected in datacneters.16,17

Background of AANN

AANN is referred to as a multi-layer NN because
AANN is composed of multiple layers of nodes

connected each other. In NN architecture, each connec-
tion between the neighboring layers has a weight that
scales data passing through it. Output data from the
first layer (input layer) are inserted as inputs of the
consecutive next layers (hidden layers). Then, nodes
in the next layers sum the data fed to them and scale
the data using a ‘squashing’ function and process them
until data reach the last layer (output layer).17

There are two phases used to do one-class classi-
fication: training and testing periods. Training phase
is used to train the AANN and testing phase to
apply the trained AANN for real-time detection.
During the training phase, each pair of an input
and target output set to the AANN is the same.
The differences between the actual and the desired
outputs are fed back to the AANN as inputs
(hence, it is called backpropagation), and the weights
are adjusted as follows

!ijðkþ 1Þ ¼ !ijðkÞ � � �
@ek
@!ij

ð1Þ

where !ij represents the weight on the connection from
layer i to j and ek is the output error of AANN chang-
ing at the kth iteration.

After the AANN is trained, actual data are inserted
as inputs for testing and the reconstruction errors (error
between the inputs and outputs) calculated. Generally,
errors are low when data for testing belong to the same
class as the data for training, and high otherwise. Also,
the AANN uses low-dimensional feature vectors
abstracted from high-dimensional feature vectors. In
the study of Jothilakshmi et al.,18 AANNs were used
to detect anomalies to capture the low-dimensional
distribution of the feature vectors. The low-dimensional
distribution was represented as a certain pattern and
the data deviating from this pattern were identified as
the anomalies.

Proposed solution

In this section, a two-tier hierarchical NN framework is
proposed to detect, localize, and classify thermal anom-
alies, as shown in Figure 1, because thermal change
corresponding to large- and small-scale problems need
to be detected, respectively, in the two tiers. The
bottom tier is composed of distributed processing
nodes (AANN nodes) and the top tier a few central
processing nodes. In the bottom tier, each AANN is
enabled to one server. The features related with the
thermal change are internal temperature, external
temperature, and CPU fan speed. They are measured
by heterogeneous sensors and sent to each server’s cor-
responding AANN. Each AANN node in the bottom

Yuan et al. 3
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tier uses the multiple thermal features on a server in a
specific location for training, and the trained AANN is
used to detect and classify the small-scale thermal
anomalies (i.e. misconfiguration of workloads and
server fan failure) in small-scale. Then, the top tier
aggregates information of these thermal anomalies
(i.e. duration, intensity, location) from the nodes in
the bottom tier, and localize and classifies the large-
scale thermal anomalies (i.e. CRAC fan failure) in
large-scale. An AANN node can be implemented as a
part of the same server where the thermal features are
collected, or it could be in a remote entity that pro-
cesses thermal features depending on the processing
capabilities in a datacenter.

Feature selection based on preliminary observation

We preliminarily observe data collected under ‘normal’
and ‘abnormal’ durations in our datacenter. The data
under ‘normal’, ‘misconfiguration’, ‘CRAC fan failure’,
and ‘server fan failure’ durations are shown in Figure 2.
The preliminary observation on the dataset facilitates
determining appropriate features for thermal anomaly
detection.

Figure 2(a) shows how every thermal feature reacts
to misconfiguration and the top subplot shows the
configured workload and the workload actually run-
ning on the server. If a workload runs on a server
where the workload is not supposed to run (misconfi-
guration), the heat mainly generated from the CPU
unexpectedly changes the internal temperature, CPU
fan speed, and external temperature. As the heat
propagates from inside to outside, these thermal

features are consecutively affected from inside to out-
side with different delays. Figure 2(a) also shows that
the internal temperature is well related with the work-
load actually running. The change of internal temper-
ature against the workload actually running can offer
the intuition knowledge that the relationship between
the internal temperature and the workload are sensi-
tive to the misconfiguration. Although the workload
still affects the CPU fan speed and external tempera-
ture of this server, the CPU fan speed and external
temperature are also affected by the heat propagation
or environmental temperature. Therefore, internal
temperature is the feature most sensitive to the
misconfiguration.

Figure 2(b) shows the reactions of all the features to
the CRAC fan failure. The CRAC fan failure increases
the temperature in and around the server. Hence, all the
features are changed by the CRAC fan failure. As the
external temperature is related with the heat propaga-
tion and the environmental temperature, it is the fea-
ture most sensitive to the CRAC fan failure. Internal
temperature is more related with workload. Hence, its
spike caused by the CRAC fan failure is not as clear as
that of external temperature. The CPU fan speed is
more sensitive to the heat propagation than the internal
temperature is. Hence, it still facilitates the detection of
the CRAC fan failure.

Figure 2(c) shows the reactions of all the features to
server fan failure. Internal temperature is only sensitive
to the server fan failure when the server fan fails during
server-busy duration. Theoretically, the CPU fan speed
and external temperature change because of the heat
propagation when server fan failure occurs. However,
none of them change clearly enough to be solely used
for detection. Hence, all the features should be used to
get combinatorial reaction and improve the accuracy of
detecting server fan failure.

Based on the preliminary observation on Figure 2,
anomalous events, and the features and scopes most
affected by the anomalous events are summarized in
Table 1. Hence, we can use the features in Table 1 to
detect different types of thermal anomalies. Using these
multiple features has the following advantages:

1. Information fromheterogeneous sensors facilitates the
detection of more types of anomalies since they have
included the major features to different anomalies.

2. Although more anomalies can be detected using
multiple features, false alarm rate will not increase
because the multiple features can be used to get the
best overall result of detection. For example, if the
environmental temperature changes during normal
operation, only using the external temperature
is likely to produce false alarm, but internal temper-
ature is not sensitive to normal.

Figure 1. Information flow chart of our two-tier hierarchical

NN framework. Thermal features are used to detect small-scale

anomalies in the bottom tier, and the information is collected to

detect large-scale anomalies in the top tier.

4 Proc IMechE Part C: J Mechanical Engineering Science 0(0)
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3. Environmental change only if the true anomalies
occur. Hence, combining the different features can
decrease the false alarm.

4. Classifying the anomalies will be simpler than using
a single feature since different features have their
special reactions to various types of anomalies. For
example, when the workload unexpectedly changes,

the CPU temperature is most heavily affected. When
the fan failure occurs, the external temperature is
most heavily affected as the heat propagates from
inside to outside. Hence, observation on the reaction
of each feature to various types of anomalies can
offer some side information to classify different
types of anomalies.

Figure 2. (a) Misconfiguration features, (b) CRAC fan failure features, and (c) server fan failure features.

Table 1. Anomalous events in datacenters and their symptoms and scopes.

Anomalous events Features most affected by the anomalous events Scope

Misconfiguration Internal temperature With a rack or multiple racks

CRAC fan failure External temperature and CPU fan speed CRAC’s region of influence

Server fan failure Internal temperature, CPU fan speed, and external temperature Server

Yuan et al. 5
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Small-scale thermal anomaly detection and
classification

The bottom tier of our framework first detects small-
scale thermal anomalies. A large amount of data should
be processed, but the thermal features are often related
to each other and they contain redundant information
in high-dimensional space of thermal features (four
dimensions in our case), which is hard to analyze.
The AANN employs the high-dimensional features
and maps them onto a low-dimensional subspace (two
dimensions in our case). The projections of the features
onto the low-dimensional subspace are called optimal
features because they represent the entire data and it is
easier to identify the data indicating ‘normal’ or ‘abnor-
mal’ in low-dimensional subspace. In the bottom tier,
an AANN is enabled to a server to detect thermal
anomalies in small-scale.

The research described in Bianchini et al.19 shows
that as the number of the layers of the AANN
increases, the complexity of AANN will increase and
if the number of the layers is less than 5, the AANN can
only get the optimal features in linear subspace. Hence,
we designed a five-layer AANN for our solution as the
five-layer architecture is sufficient to get the optimal
features in nonlinear subspace and more layers will
increase the complexity of training the AANN. The
architecture of the five layers AANN is as shown in
Figure 3. Generally, the AANN learns the relationship
in the data during training phase. The data labeled
‘normal’ are used to train the AAAN. Besides, a
small dataset labeled ‘anomaly’ is used to validate the
trained AANN and get some side information. It is

worth noting that although the amount of the data
labeled ‘abnormal’ is not sufficient, they can be used
to validate the AANN and offer some useful informa-
tion for further classification.

During the training phase, the data labeled ‘normal’
are used as the inputs and the target outputs simulta-
neously for training. The four-dimensional (4D) inputs,
i.e. (workload, internal temperature, external tempera-
ture, and CPU fan speed) are mapped onto two-dimen-
sional (2D) subspace through the input, the second,
and the middle layers of the AANN. The middle
layer is called the bottleneck layer because it has only
two nodes whereas other layers in the AANN have
more nodes than the bottleneck layer. Then, the data
in the 2D subspace are mapped onto 4D space through
the fourth and the output layers. For every iteration,
when training samples are inserted for training, the
AANN calculates the error between its input and its
output and adjusts its weights based on the error with
equation (1) to minimize the error between the next
input and the next output of AANN. The errors
between the inputs and the outputs are called recon-
struction errors because they indicate the ability of the
AANN to reconstruct its inputs belonging to certain
class. Reconstruction errors are calculated by equation
(2) as

ek ¼

Pm

i¼1

ðInik �OutikÞ

m
, k 2 f1, . . . , ng ð2Þ

where n is the number of samples and m the number of
features which is 4 in our case.

Figure 3. A five-layer AANN.

6 Proc IMechE Part C: J Mechanical Engineering Science 0(0)
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The two nodes in the bottleneck layer map the data
from the 4D space onto 2D subspace and the 2D data
contain the most significant information of the input
since the 2D data need be used to reconstruct the
input in the output layer. When the reconstruction
error is minimized, it means that the 2D data have con-
tained enough abstracted information from inputs and
they can be used to reconstruct the input in the output
layer. Therefore, the 2D data are the optimal features in
low-dimensional subspace extracted from high-dimen-
sional space. In this way, the AANN is adapted to
reconstruct the input in its output layer when the
inputs are collected under normal circumstances.

After the AANN is trained well, the samples for
training are input to the AANN again to represent
the ability of the AANN to capture the pattern of the
data labeled ‘normal’. The projections of data for train-
ing onto 2D subspace are represented with the optimal
features, as shown in Figure 4(a). All the optimal fea-
tures are organized with a certain trend. It indicates
that the AANN has captured the pattern contained in
the data for the sake of clearly training it. Therefore,
the reconstruction errors between the inputs for train-
ing and the outputs are close to 0.

The intuition analysis about the relationship between
the types of anomalies and the features most affected can
give deeper knowledge about the characteristics of the
features, i.e. the reconstruction errors of each feature
have different reactions to various types of anomalies.

The intuition analysis about detection results accord-
ing to normal and various types of abnormal duration
gives the domain knowledge as follows: (1) The recon-
struction errors during anomaly duration are higher than
the reconstruction errors during normal duration since
the weights of the AANN have been adjusted to the data
for training and only the optimal features of ‘normal’ set
can be used to reconstruct the input; (2) The reconstruc-
tion errors of workload and internal temperature are
higher than those of other features when the thermal
anomalies are caused by misconfiguration. The reason
is that when the misconfiguration occurs, the internal
temperature unexpectedly changes and the relationship
between the configured workload and the measured
internal temperature clearly deviates from that during
the normal duration; (3) The reconstruction errors of
external temperature are higher than the reconstruction
errors of workload and internal temperature when fan
failure events occur. The reason is that when the fan fail-
ure occurs, the external temperature increases more
clearly than other features because it is affected by the
environmental temperature or heat propagation from
the inside to outside of the server; and (4) The thermal
change in certain server caused by the server fan failure
does not have heavy impact on the thermal change of its
neighboring servers.

The training set and a small set of data labeled ‘abnor-
mal’ are used to validate the mentioned domain knowl-
edge. The domain knowledge is illustrated in Figure 4.
Figure 4(a) indicates that anyoptimal featurewhichdevi-
ates from the pattern extracted from the training set is
corresponding to the ‘abnormal’ situation. The recon-
struction errors according to abnormal situation are
clearly high and a threshold can be set based on the max-
imum reconstruction errors and relaxed later to decrease
the false alarm.An adaptive threshold selection is used to
select themaximum error as initial threshold and expand
itwith the standarddeviation error during test.Threshold
at time t is set as follows

Threshold ¼ maxðenÞ þ std ðe1,2,���,tÞ, t4 n ð3Þ

When any sample whose reconstructed error e
through AANN is higher than Threshold, it is detected
as an ‘anomaly’.

Although the adaptive threshold selection can
decrease the false alarm caused by the normal environ-
mental change, the AANN will still outdate periodi-
cally. This fact requires AANN to be periodically
retrained with recent data. Retraining of the NN is
implemented by Algorithm 1.

Figure 4(b) shows that the reconstruction errors of
the external temperature are the highest when CRAC
fan failure occurs and the reconstruction errors of the

Algorithm 1. Retraining using intensity of potential

risk of exceeding the threshold.

INIT PARAMETER DECISION:

ek¼ {the kth member in the list of the

reconstruction errors(1� n)}

Threshold¼ {upper limit, the threshold to detect

the thermal anomaly}

a¼ {the factor multiplied with the threshold to generate

a lower limit}

b¼ {the counter to count the numbers of the errors consecu-

tively higher than the lower limit}

c¼ {the indicator to decide when to retrain the AANN}

Initialize parameters: a¼ 0:96, b¼ 0, c¼ 100

RETRAINING DECISION:

1: for k¼ 1! n do

2: if ek> a� Threshold and ek< Threshold then

3: if b< c then

4: b( bþ 1

5: else

6: retrain the AANN with recent 2� 104 data

7: end if

8: else if ek� Threshold then

9: thermal anomaly occurs

10: else

11: b( 0

12: end if

13: end for

Yuan et al. 7
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workload and internal temperature are higher than
those of external temperature when misconfiguration
occurs. This domain knowledge can work as a intuition
proof to separate the misconfiguration from fan failure
events (CRAC fan failure or server fan failure)
although the data labeled ‘anomaly’ are insufficient
for training.

Large-scale thermal anomaly detection and
classification

The top tier distinguishes the small-scale fan failure
anomaly (server fan failure) and the large-scale fan fail-
ure anomaly (CRAC fan failure). Figure 4(c) shows
that the reconstruction errors of AANNs enabled to
neighboring servers are in the similar level when
CRAC fan failure occurs and the reconstruction
errors of AANN enabled to certain server are higher
than those of its neighbor servers’ when server fan fail-
ure occurs in that server. The reason is that the server

fan failure does not affect its neighboring server. This
domain knowledge is as shown in Figure 4(c). The loca-
tion of the server fan failure will be recorded if it is
indicated that the server fan failure occurs and the
range of the anomalies will be recorded if the CRAC
fan failure occurs.

Performance evaluation

In real datacenters, as the proposed method aims at
detecting both the small- and large-scale thermal anom-
alies, one AANN is enabled to each server. The back-
propagation algorithm is adopted during training.

The experiments were implemented in the datacenter
of Rutgers University. The training efforts increase
while the datacenter size becomes larger. However,
the training efforts do not linearly increase against the
datacenter size. The reason is that algorithm 1 is imple-
mented for different AANNs and the AANNs are not
activated for training simultaneity. Hence, the

Figure 4. (a) Projections of features onto 2D space and their errors, (b) reconstruction errors of different inputs to AANN against

different types of anomalies, and (c) reconstruction errors of the AANNs of neighboring servers.
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increments of the ‘training’ efforts are smaller than the
increments of datacenter size. In our experiments,
2� 104 data were used for each time of training. The
servers are mounted onto 19-inch racks. For thermal
anomaly detection, the sensors and the sensed features
are given in Table 2. Figure 5(a) shows the deployment
of 11 nodes of Telosb motes of the wireless sensor net-
work in the datacenter. The top mote works as a base
station and the other motes as sensor motes. Besides the
external sensors, the internal sensors which are built-in
components in each server are also used. The external
sensors at the outlet sense the outlet temperature which
is mainly affected by the heat propagation and environ-
mental temperature. The location of fan around the
heated elements is shown in Figure 5(b), and the inter-
nal temperature sensors are located under the fan. The
internal sensors sense the CPU temperature (internal
temperature) and CPU fan speed which are mainly
affected by the workload and heat propagation. To
combine the features sensed by the internal and

external sensors, a server is connected to the base sta-
tion and the internal features are consecutively sensed
and sent to the server connected to the base station. The
internal information is recorded in the server connected
to the base station. The signals containing the outlet
temperature are sent to the base station every 3 s via
wireless sensor network. Once the base station receives
the signal from the external sensors, the server con-
nected to it reads the outlet temperature from the
signal and the latest internal information from the
record. In this way, the external and internal features
are combined together for analysis.

The noise contained in the raw data degrades the
classification performance and the data need be pre-
processed to filter the noise. The moving average
technique is used here where the moving window size
is 50, i.e. the window time is 150 s. To enhance the
accuracy of AANN, we normalized the input and
output instances to [0; 1] by the following equation

f ðxiÞ ¼
xi � xmin

xmax � xmin
ð4Þ

where xi is the variable in the dataset at the ith iteration
and xmin and xmax are the minimum and maximum of
the dataset.

Result of thermal anomaly detection

The anomalous events in Table 1 are generated. The
events are insufficient for training and only used to
evaluate the performance of the thermal anomaly

(a) (b)

Figure 5. Location of sensors and fans: (a) wireless sensor network monitoring the outlet temperature of servers and (b) internal

temperature sensors and fans around the heated elements on the motherboard.

Table 2. Sampled features and their corresponding sensors.

Features

Sensors used to collect

different types of data

Outlet temperature (�C) Sensors located at the

outlet of the rack

CPU temperature (�C) Built-in sensors on the CPU

CPU fan speed (r/min) Sensors on the motherboard
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detection. The experimental results are shown in
Figure 6: (1) misconfiguration events were generated
by running the workload different from the configured
workload on certain servers. Figure 6(a) shows that the
reconstruction errors of AANN in the misconfiguration
duration are clearly higher than those in normal dura-
tion; (2) CRAC fan failure was generated by turning off
the CRAC fan or decreasing its speed. Figure 6(b)
shows that the reconstruction errors of AANN in the
CRAC fan failure duration are clearly higher than
those in the normal period and most reconstruction
errors caused by CRAC fan failure are higher than
those caused by misconfiguration events; and (3) fan
failure was generated by stopping the running of the
server fan. Figure 6(c) shows that the reconstruction
errors of AANN in the server fan failure duration are
higher than those in the normal duration and it is
hard to separate the server fan failure events from the
misconfiguration events only with the mean square
errors because some reconstruction errors caused by
server fan failure are close to those caused by
misconfiguration.

Comparison using receiver operating characteristic

Receiver operating characteristic (ROC),20 which is a
popular classification performance metric, is applied to
evaluate the performance of anomaly detection. ROC
was originally applied within the medical field. Hence,
the samples representing ‘abnormal’ and ‘normal’
behaviors are referred to as the positive and negative
samples. The ROC curve heavily relies on notations as
sensitivity and specificity which are used to calculate the
different measurements of the quality of the test.
The ROC parameters, i.e. TP, FP, TN, and FN are
defined in Table 3. The sensitivity (SE), as calculated
in equation (5), also called true positive rate (TPR), is
the probability of having a positive test among the sam-
ples which have positive diagnosis. The ROC curve has
the sensitivity plotted vertically and has the horizontal
axis called the false positive rate (FPR) as calculated by
equation (6)

SE ¼ TPR ¼
TP

TPþ FN
ð5Þ

FPR ¼
FP

FPþ TN
ð6Þ

The sensitivity and specificity are calculated against
each threshold and the resulting points are plotted as a
ROC curve. The research on ROC has indicated that
the larger the area under ROC curve (AUC) is, the
better the performance of the detection is.20

Impact of uncertainty in sensor readings on the
detection performance. As the outlet temperature is
sensed by the temperature sensors on the Telosb mote
and CPU temperature is read by the sensors attached

Figure 6. (a) Reconstruction errors during misconfiguration

duration, (b) reconstruction errors during CRAC fan failure

duration, and (c) reconstruction errors during server fan failure

duration.

Table 3. Definition of ROC parameters.

Actual label

Positive Negative

Estimated label Positive TP FN

Negative FP TN

Note: TP: true positive; FP: false positive; FN: false negative; and TN: true

negative.
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to the CPU, the causes of uncertainty in sensor read-
ings in the datacenter can be summarized into three
groups:

1. The disturbance from the external environment,
such as electromagnetic interference, change of
environmental temperature, or opened door of
datacenter.

2. The degraded stability of sensors caused by the
thermal drift of sensors.

3. Noise caused by random errors.

Generally, the uncertainty would degrade the detec-
tion performance, i.e. decrease the TPR and increase
the FPR. Hence, some techniques are used to mini-
mize the impact of these kinds of uncertainties on the
thermal anomaly detection. Moving-average technique
is used to remove the noise in the raw data and min-
imize the effect of the noise. Also, the impact of the
thermal drift of sensor can be removed by calibration.
The impact of environmental temperature can be min-
imized using the re-training algorithm 1 since the
scheme can adapt itself to the environment. The case
that the door of datacenter is opened mainly affects
the region where temperature is heavily affected by the
air from outside. The electromagnetic interferences
from power switch, transformer, or other equipments
make the sensor read the data incorrectly or miss
some data. However, during the training phase, the
uncertainty caused by opened door or electromagnetic
interference can be minimized using a large amount of
data for training because these two cases can be main-
tained only for a short time and other data collected
under ‘normal’ circumstance can make the AANN
only adapt to the significant ‘normal’ pattern in the
whole dataset. The FPR will increase when these two
cases occur in test phase. Hence, these two cases
should be carefully concerned at the design stage of
the datacenter.

Comparison between the results with different
features. Each type of anomaly has different impacts
on the various features. Hence, different scenarios in
Table 4 are used to validate this domain knowledge.

Figure 7(a) shows that the ROC curves for the
detection of misconfiguration in scenarios 1 and 2 out-
perform that in scenario 3. Using only the external tem-
perature, AUC is obtained as 0.92. However, by
introducing the internal temperature, it is much
better. Using CPU fan speed does not make much
sense after the internal temperature has been used.
The reason is that the internal temperatures are most
sensitive to the workload change and therefore change
the CPU fan speed. After the internal temperature is
introduced, the AANN treats the relationship between

workload and CPU fan speed as redundant
information.

Figure 7(b) indicates that the thermal anomaly
caused by CRAC fan failure changes the various

Figure 7. (a) ROC curve of the misconfiguration detection

results with AANN using different features, (b) ROC curve of

CRAC fan failure detection results with AANN using different

features, and (c) ROC curve of server fan failure detection results

with AANN using different features.

Table 4. Scenarios with different features.

Scenario 1 Detection using external temperature,

internal temperature, and CPU fan speed

Scenario 2 Detection using external and internal

temperatures

Scenario 3 Detection only using external temperature
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features clearly enough and the detection performance
in any scenario gets the AUC close to 1.0. The external
temperatures are impacted most heavily by the CRAC
fan failure because it is affected by not only the heat
propagation but also the environment around the
servers.

Figure 7(c) shows that the performance of detecting
server fan failure is not highly improved when only
certain feature is used because the server fan failure
mainly affects the heat transferring from the inside to
the outside of the server. Hence, using all the features
related with the heat transfer improves the performance
of detecting server fan failure.

Figure 7 indicates that using the multiple features
highly improves the detection performance.
Furthermore, using the multiple features does not
require additional work to be done to adjust the archi-
tecture of AANN to detect the various anomalies.

Comparison between different methods. We com-
pared our method with the following methods:
(1) regression model-based method: regression model
is a function which can adjust its parameters based on
the historical workload and estimate the next features
such as external temperature, internal temperature,
and CPU fan speed based on their historical data.
If the differences between the measured features and
the estimated features are higher than the threshold,
the anomalies are detected; (2) SOM is a competitive
network composed of components called neurons. At
each epoch, the neurons whose weight is nearest to
the input for training will become winner and its
weight will be adjusted so that the similar neurons
form a cluster. If the distance between project of the
measured data and the center of the cluster is longer
than a certain threshold, it is classified as an anomaly.
We decide the threshold by calculating the mean value
of distances between each datum and the center of the
cluster and relax it by 75%; (3) one-class SVM: it
transforms the feature into higher dimensional space
via the kernel function and separates the different
kinds of data with the hyperplanes. Hence, the hyper-
plane works as a boundary between the data indicat-
ing ‘normal’ and ‘abnormal’ situations. The kernel
function used here is the radial basis function since
it can classify the data in high-dimensional space even
if the data are not linearly separable in the high-
dimensional space.

AANN-based detection in the proposed method,
regression model-based detection, one-class SVM-
based detection, and SOM-based detection are com-
pared on detecting the misconfiguration. Figure 8(a)
shows that the regression model-based method gives
superior performance compared to other methods in
detecting misconfiguration. By analysis, the reason

obtained is that the relationship between the features
and the workload broken by misconfiguration is clear
enough for statistical modeling.

One-class SVM performs the worst in misconfigura-
tion detection since the mapping of data from low-
dimensional to high-dimensional space introduces
more redundant information which is not appropriate
for the thermal anomaly detection in datacenters.

Figure 8(b) shows that AANN-based detection in
the proposed method outperforms other methods in
detecting CRAC fan failure. Regression model-based
detection gets the worst performance since it is suscep-
tible to both temperature change caused by the CRAC
fan failure and normal change of environmental
temperature, which gives it the highest FPR.

Figure 8. (a) ROC curve of the misconfiguration detection

result with different approaches, (b) ROC curve of CRAC fan

failure detection result with AANN using different approaches,

and (c) ROC curve of server fan failure detection result with

AANN using different approaches.
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Figure 8(c) shows that the proposed ANN-based
method gives superior performance compared to the
other methods in detecting server fan failure because
it captures the implicit changes of the relationship
between different features correctly and gets lowest
FPR. SOM-based detection performs the worst since
there may not be any appropriate knowledge discov-
ered in the features for competitive learning.

The result indicates that AANN-based method per-
forms the best in detecting fan failure anomalies and
regression model-based method the best in detecting
misconfiguration anomalies. The reason is that the
change of the external temperature caused by the mis-
configuration is stable enough for modeling and the
regression model-based method can clearly separate
the normal duration and misconfiguration anomalies.
However, when CRAC fan failure occurs, the changes
of the relationship among the workloads and the fea-
tures take place too implicitly to be modeled with
regression. Another drawback of the regression
model-based method is that it is susceptible to the envi-
ronmental temperature. This fact indicates that the
AANN-based method is appropriate for anomaly
detection and it may be improved when combined
with regression model-based method.

Comparison between one-class and multi-class clas-
sification-based detections. Misconfiguration, server

fan failure, and CRAC fan failure are rare events in
the datacenters and the amount of the data collected
in each events duration is not enough for training, i.e. it
cannot accurately detect the anomalies. Multi-class
classification-based detection uses workload and fea-
tures labeled ‘normal’ and ‘abnormal,’ i.e. external tem-
perature, internal temperature, and CPU fan speed as
inputs and the combination of indexes 1 and 2 in
Table 5 as output.

The proposed method is compared with the multi-
class classification-based detection in Figure 9. It is
shown that the multi-class classification-based detec-
tion has higher FPR than the proposed method.

Conclusions and future work

In our solution, a two-tier hierarchical NN framework
is proposed to detect thermal anomalies. The features
to the framework, i.e. internal temperature, external
temperature, and CPU fan speed are sensed by hetero-
geneous sensors. The framework extracts the relation-
ship between the features and the thermal change with
the AANN to detect the small-scale thermal anomaly at
the bottom tier and detect the large-scale thermal
anomaly at the top tier. The experiment results show
that the proposed method outperforms regression
model-based, SVM-based, and SOM-based methods
by at most 5%, 21%, and 11%, respectively. The exper-
imental results also show that the proposed method
outperforms the multi-class classification-based
detection when both the methods are given optimal
thresholds. Furthermore, the detection results give a
promising method for anomaly classification in future
work, i.e. the root cause of thermal anomalies can be
identified based on the relationship between the recon-
struction errors of the AANN and the types of
thermal anomalies. This anomaly classification will be
more practical than the multi-class classification since
the proposed anomaly classification does not need the
large amount of data according to each type of thermal
anomaly for training.
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Appendix

Notation

a the factor multiplied with theThreshold to
generate lower threshold as a lower limit

b a parameter to count the numbers of the
errors consecutively higher than the upper
limit and lower than the lower limit

c the indicator to decide when to re-train
the AANN

ek the kth mean reconstruction error
between input and output of the AANN

f(xi) the function to make moving average on
the dataset x

FN false negative
FP false positive
FPR false positive rate
Inik the kth value of the ith feature input to

the AANN
m dimension of features
n numbers of training epochs
Outik output of AANN when the kth value of

the ith feature as the input
SE sensitivity represented by TPR
Threshold threshold to detect the anomalies
TN true negative
TP true positive
TPR true positive rate
xmin the minimum value of x
xmax the maximum value of x
!i
j the weight on the connection from ith

layer to jth layer
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