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Abstract Thermal cameras provide fine-grained thermal information that enables
monitoring and autonomic thermal management in large datacenters. The real-time
thermal monitor network employing thermal cameras is proposed to cooperatively
localize hotspots and extract their characteristics (i.e., temperature, size, and shape).
These characteristics are adopted to classify the causes of hotspots and make energy-
efficient thermal management decisions such as job migration. Specifically, a sculp-
turing algorithm for extracting and reconstructing shape characteristics of hotspots is
proposed to minimize the network overhead. Experimental results show the validity
of all the algorithms proposed in this paper.

Keywords Data center · Thermal management · Thermal camera networks · Energy
consumption · Fine-grained data collection

This work was performed while H. Liu was visiting the CPS Lab, Rutgers University.

H. Liu (�)
College of Electronic Science and Technology, Dalian University of Technology, 2 Linggong Road,
Dalian, Liaoning, 116023, China
e-mail: liuhang@dlut.edu.cn

E.K. Lee · D. Pompili
NSF Center for Autonomic Computing, Department of Electrical and Computer Engineering,
Rutgers University, 94 Brett Road, Piscataway, NJ, 08854, USA

E.K. Lee
e-mail: eunkyung_lee@cac.rutgers.edu

D. Pompili
e-mail: pompili@cac.rutgers.edu

X. Kong
School of Information and Communication Engineering, Dalian University of Technology,
2 Linggong Road, Dalian, Liaoning, 116023, China
e-mail: kongxw@dlut.edu.cn

mailto:liuhang@dlut.edu.cn
mailto:eunkyung_lee@cac.rutgers.edu
mailto:pompili@cac.rutgers.edu
mailto:kongxw@dlut.edu.cn


384 H. Liu et al.

1 Introduction

The last few years have seen a dramatic increase in the number, size, and use of
datacenters. Power consumption and heat management have emerged as key design
challenges in creating new datacenter architectures. Based on previous investigations
[14], it can be assumed that datacenters today account for almost 2 % of all electric-
ity consumed in the US growing at a rate of more then 12 % each year. A significant
fraction of the power consumption, i.e., up to 50 %, is directed to cooling the heat
generating equipment [10]. Although recently built datacenters exhibit better cooling
efficiency, cooling energy consumption is still significant [32]. One of the causes of
energy cost for cooling is that many current datacenters are not equipped with elab-
orate sensing infrastructure that monitor the phenomenon of “heat transfer” to make
cooling decisions. Since heat transfers in various forms (i.e., convection, conduction,
and radiation), it is complicated to model and predict the future thermal behavior of a
datacenter. Most of the time, datacenters only have sparsely-deployed global sensing
devices to aid in adjusting their cooling solutions. This lack of knowledge impairs
the cooling cycle of datacenters because heat imbalances and localized hotspots [16]
may not be detected using only few global sensors. These hotspots eventually inter-
fere with cold air that constantly extracts heat [19], resulting in increasing cooling
costs.

This paper addresses the autonomic thermal monitoring mechanism for datacen-
ters, which is based on the real-time heat distribution in datacenters to optimize per-
formance in terms of energy consumption, and throughput. Specifically, this paper
focuses on characteristics of hotspots which can be obtained by the thermal moni-
tor network to improve the overall efficiency of the cooling system. The main tasks
of the thermal monitor network are to detect and localize hotspots, and extract their
characteristics for thermal management.

In Fig. 1, we introduce the architecture for the thermal monitor network, where
two wireless sensor sub-networks with different sensors are shown. The first sub-

Fig. 1 The architecture of the thermal monitor network proposed in this paper
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network on the left shows a scalar sensor network in which the nodes are deployed
at significant spots to monitor temperature, humidity, airflow, etc. The scalar sensor
network completes the same functions as that in [1]. For example, temperature sen-
sors are deployed in the front and back of the chassis to measure the inlet and outlet
temperature; airflow meters are deployed at the vent tiles to measure the airflow into
the datacenter. Most of thermal-aware scheduling algorithms are based on these mea-
sured values, such as Uniform Outlet Profile and Minimal Computing Energy [20].
To further analyze the temperature environment in datacenters, the other subnetwork
on the right is proposed. It shows a thermal camera network (TCN) that is com-
posed of thermal camera nodes (multiple thermal cameras + processing nodes) on
the ceiling in order to thermally “see” the datacenter in high granularity and process
thermal images so to aid in efficient cooling of the datacenter. Thermal cameras in the
TCN capture these hotspots and convert the data to corresponding images of temper-
ature, so that each pixel in the image represents temperature data, providing detailed
information about heat distribution. The TCN collects this raw data, extracts char-
acteristics through in-network processing, and then enables acquisition of knowledge
about hotspots (such as the causes for hotspots) inside the datacenter. This solution
can be applied to not only datacenters, but also other applications that utilize multiple
thermal cameras.

When a hotspot is detected, an event is triggered, for example, to locate a resource
with the lowest temperature for job reallocation. A part of the workloads (e.g., jobs
at the hotspot) may be migrated to keep the operating conditions within the desired
constraints for a longer time without requiring expensive global allocation across the
whole datacenter. The initial cost for multiple thermal camera nodes may be expen-
sive as more than one thousand dollars each, but total operational cost for cooling the
datacenter can be reduced more by deploying a TCN. Contributions of this paper are
summarized as follows:

1. A thermal monitor network that is a new paradigm using multiple thermal camera
nodes for datacenters is proposed.

2. Cooperative detection and localization algorithm for hotspots using the TCN is
proposed.

3. A novel algorithm (sculpturing algorithm) is proposed for compression and recon-
struction of hotspots’ shape.

The remainder of this paper is organized as follows. In Sect. 2, we summarize
related work. In Sect. 3, we propose algorithms to detect and localize hotspots us-
ing multiple camera nodes cooperatively. In Sect. 4, we propose extraction and re-
construction of characteristics of hotspots using the TCN. Specially, we propose the
sculpturing algorithm to minimize shape data of hotspots. We also discuss simulation
and experimental results in both Sects. 3 and 4, and finally summarize and conclude
our work in Sect. 5.

2 Related work

In this section, we review previous topics that are relevant to our work: thermal map-
ping for datacenters, cooperative detection algorithms, cooperative localization algo-
rithms, and extraction and reconstruction algorithms for shape.



386 H. Liu et al.

Thermal mapping for datacenters A thermal map that is the temperature field in
the datacenter space can enable holistic IT-facilities design, increase hardware relia-
bility, decrease cooling costs, increase compaction, and improve operational efficien-
cies. A datacenter monitoring system, for example, either a temperature sensor-based
monitoring service [31] or by using compute fluid dynamics (CFD) software [2, 5],
can generate a thermal map for a datacenter. Some research [19, 31] claims that the
CFD-based model is too complex and is not suitable for real-time scheduling in a
datacenter.

Measurement-based modeling for a datacenter is used to reduce the complexity in
the specifications of the model [12]. Based on the integration of embedded sensors
with computational models and workload schedulers, it is used to watch for hotspots
to improve the overall efficiency of the cooling system. Workload schedulers use on-
line information about the datacenter operating conditions obtained from the sensors
to generate appropriate management policies. Furthermore, local processing within
the sensor network is used to enable timely responses to changes in operating condi-
tions and determine job migration strategies, such as Uniform Outlet Profile (UOP),
Minimal Computing Energy (MCE), and Uniform Task (UT) [20]. Patel et al. present
some of the early work in datacenter monitoring and management [23, 24, 30] iden-
tifying some key inefficiencies in cooling and CRAC configurations. Several studies
explore techniques for efficient energy and thermal provisioning in data centers [3,
6]. Bash et al. [1], also consider efficient datacenter monitoring by selective sensor
sampling and determining the best set of fixed sensor locations, while our technique
is based on fixed sensor and pan-tilt sensing, which can complement static instrumen-
tation. Some researchers have explored robotic monitoring approaches for different
environments. Patel et al. [22, 24] argue for robotic monitoring and management for
data centers, but do not describe a design or provide any implementation details. Pon
et al. [25] describe a cable-based robot for monitoring environmental data in rivers
and forests. Lenchner et al. [17] describe a robot that serves as a physical autonomic
element, capable of navigating, mapping, and monitoring data centers with little or no
human involvement. To navigate, the robot takes advantage of the square grid formed
by industry standard 20′ × 20′ datacenter floor tiles to move one floor tile at a time,
continuously feeling its way around the datacenter and keeping track of where it has
already been, eventually visiting all unobstructed tiles. Whenever it visits a tile, the
robot stops at its center, and takes a set of sensor readings at various heights. The
total scan time is about tens of minutes [17], thus the robot can only be used to mea-
sure stable temperature environment in datacenters, while more attention is paid on
hotspots formed in a short time in this paper.

Cooperative detection and localization algorithms Although a few recent papers
are specifically concerned with cooperative detecting methods, they focus on a 2D
detecting problem of how to cover a planar region which is typical of a building’s
floor plan. In [7], they focus on the camera placement problem, where the goal is to
determine the optimal positioning and number of cameras for a floor plan region to be
observed. The method in [7] can find targets on the floor such as a human, however, it
is incapable of detecting levitating hotspots because it lacks a 3D detection capability.
In this paper, the TCN needs to scan the entire 3D space to detect hotspots.



Thermal camera networks for large datacenters using real-time 387

Fig. 2 The visible image and the thermal image of the same object

As one thermal camera cannot range (find the distance to) an object, two or more
cameras are needed to find a hotspot’s location using the principle of computational
stereo vision. This principle has been known for more than 20 years and involves
two main problems which have been extensively studied, namely the correspondence
problem (i.e., match points on one image to their corresponding points on the other)
and the reconstruction problem (i.e., construct 3D map from matched points in 2D
images). Among these two problems, the correspondence problem is more challeng-
ing. If several cameras find a hotspot, they must compare its features, to make sure
they have found the same one before they localize it. A common strategy is to match
distinct features that are extracted from these images. The features should be robust
enough to avoid distortion from noise and geometric transformation. Many robust
local feature detectors for visible images exist (e.g., Harris corner detector [11], the
scale invariant feature transform [18], Kadir’s feature detector [13]). However, visi-
ble images (such as Fig. 2(a)) include many distinct corners and edges, while thermal
images (such as Fig. 2(b)) do not. Thus, the above detectors are not capable of accu-
rately detecting good features in thermal images because hotspots do not include any
distinct corners or edges [8].

A few recent papers are specifically concerned with computational stereo vision
problems in thermal images. The literature on the subject is extremely limited. The
technique proposed in [26] recovers a 3D temperature map from a pair of calibrated
thermal cameras using epipolar lines. However, estimating an epipolar line is diffi-
cult because it relies on correspondence in blurry thermal images which lack robust
features. The localization system used in [8] and [9] is a pair of adjacent thermal
cameras. However, the initial cost of deploying pairs of adjacent thermal cameras is
double when compared to implementing the TCN that uses one camera to cover the
same area. Their approach is too expensive considering a large datacenter and the cost
of thermal cameras. Thus, the TCN is more suitable to detect and localize hotspots in
a wide area.
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Extraction and reconstruction algorithms for shape Hotspots can be stored us-
ing common image compression algorithms, such as the Joint Photographic Experts
Group (JPEG) [34], Embedded Zero-tree Wavelet (EZW) [29], Set-Partitioning in Hi-
erarchical Trees (SPIHT) [28], Embedded Block Coding with Optimized Truncation
(EBCOT) [33], pyramidal coding [15], directional decomposition based coding [35],
segmentation based coding [27], and vector quantization [21]. Based on the results
of the evaluation conducted with the above eight popular image compression algo-
rithms, it is found in [4] that SPIHT wavelet-based image compression is the most
suitable image compression algorithm to implement for a wireless sensor network
in a hardware constrained environment. However, a series of shape data at different
times are required to monitor the state change of each hotspot. If these shape data are
saved as an image compression algorithm, the size of compressed data is still large.

Also, a hotspot can be represented by a similar geometrical figure with fewer pa-
rameters, such as a corresponding ellipse or the smallest convex polygon. However,
the similar geometrical figure cannot well represent the details of the edge.

3 Cooperative detection and localization algorithm

The TCN consists of many thermal camera nodes with pan and tilt capability to in-
crease the range of sight, such as Ci , Cj , and Ck shown in Fig. 3. Even though cam-
eras can pan and tilt, they cannot see the full extent of the monitored space because
of their small viewing angle and the shading effect. Moreover, hotspots may levitate
in the air making “phantom” hotspots such as in Fig. 4. If camera Ci finds a hotspot
H , Cj finds another hotspot Hj , Ck finds another hotspot Hk , and �CiH intersects
�Cj Hj

or �CkHk
; a “phantom” hotspot appears at that intersection. Thus, in order to

detect hotspots rapidly and accurately, the thermal camera nodes must cooperatively
detect all possible hotspots in a 3D space.

3.1 Cooperative detection of hotspots

According to the principle of computational stereo, the absolute coordinates of a
point can be calculated by at least two cameras. The precondition for cooperatively

Fig. 3 Cooperative detection
and localization of a hotspot

Fig. 4 The real hotspots and
‘phantom’ hotspots



Thermal camera networks for large datacenters using real-time 389

Fig. 5 (a): Parameters of the thermal cameras, where ∠ACB = αh, ∠DCE = αv , p(h) = [xh, yh]T and
P(H) = [XH ,YH ,ZH ]T . (b): The horizontal and vertical angle of optical axis of the thermal camera

localizing a hotspot in 3D is that some thermal camera nodes find the same hotspot.
For example, if a thermal camera node finds a hotspot, H , from a thermal image, it
will transmit the information of H to other cameras, which will detect H according
to the information. Because of the restriction of a small viewing angle, one thermal
camera cannot see the full extent of the monitored space. It must take a long time
for a camera to scan the whole 3D space and then compare all detected hotspots to
H and choose the corresponding spot of H . Thus, we propose a method to simplify
cooperative detection from 3D to 2D. In this paper, H represents the center of the
real hotspot (3D), and h represents the projection of that hotspot in the thermal image
(2D).

Parameters used for cooperative detection are explained in this paragraph. As
shown in Fig. 5(a), focal length of the thermal cameras is denoted as F , horizon-
tal angle of view is αh, vertical angle of view is αv , and principal point in the image
is denoted o. p(q) denotes the 2D coordinates of the point q in the thermal image,
namely p(q) = [xq, yq ]T , and P(Q) denotes the absolute coordinates (3D) of the
point Q, namely P(Q) = [XQ,YQ,ZQ]T . Thus, the coordinates of o in the thermal
image is p(o) = [Wid/2,Hei/2]T where the resolution of the thermal cameras’ detec-
tors is Wid × Hei pixels. All above parameters can be obtained from the specification
manual of the thermal camera. Moreover, we assume that the horizontal and vertical
angle of optical axis are βh

i and βv
i (Fig. 5(b)), and all the locations of the center

of the thermal camera nodes, P(Ci) = [XCi
,YCi

,ZCi
]T , where i = 1,2, . . . ,N , are

known.
Once Ci finds a hotspot H , it calculates the straight line �CiH that passes Ci and

H . Then it estimates the 2D coordinates of the hotspot center in the thermal image,
p(h). An isotherm line is used to estimate the hotspot center in the thermal images.
The isotherm line is a line connecting points of equal temperature. The edge of the
hotspot in the thermal image is defined as the isotherm line at a specific temperature.
Let ξ denote the area of the hotspot in the image, and T (x, y) denote the temperature
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of pixel [x, y]T in the image. The coordinates of the hotspot center p(h) in the image
are defined as following:

p(h) =
[
xh

yh

]
= 1∑

(x,y)∈ξ T (x, y)

[∑
(x,y)∈ξ (T (x, y) · x)∑
(x,y)∈ξ (T (x, y) · y)

]
. (1)

Since the intersection of �CiH and the image plane is h, �CiH and �Cih are the
same straight line. Then the horizontal and vertical angles between �CiH and the
optical axis �Cio, γ h and γ v are{

γ h = arctan((xh − Wid/2)/F ),

γ v = arctan((yh − Hei/2)/F ).
(2)

So the horizontal and vertical angle of �CiH are{
βh

�CiH
= βh − γ h,

βv
�CiH

= βv − γ v (3)

respectively. Thus, �CiH can be described as

�CiH :
⎡
⎣X

Y

Z

⎤
⎦ =

⎡
⎢⎢⎣

cosβv
�CiH

· cosβh
�CiH

cosβv
�CiH

· sinβh
�CiH− sinβv

�CiH

⎤
⎥⎥⎦ · t +

⎡
⎣XCi

YCi

ZCi

⎤
⎦ (4)

where t is an independent variable. Let li be the direction vector of �CiH , namely

li =

⎡
⎢⎢⎣

cosβv
�CiH

· cosβh
�CiH

cosβv
�CiH

· sinβh
�CiH− sinβv

�CiH

⎤
⎥⎥⎦ , (5)

so

�CiH = li · t + P(Ci). (6)

Let the set C̃ consist of the cameras that can connect to Ci directly (in single hop).
Then Ci will transmit relevant data to the cameras in C̃. The data includes the location
of Ci and the direction vector of the straight line �CiH , namely P(Ci) and li .

If a camera Cj , (Cj ∈ C̃), receives the data from Ci , it will calculate the distance
between itself and �CiH , denoted as ‖Cj , �CiH ‖. The threshold T H1 is used to avoid
selecting the cameras which are too close to �CiH . If ‖Cj , �CiH ‖ > T H1, the lines
�CiH and �Cj H can form a certain angle to cooperatively localize, otherwise too small
of an angle will lead to more error in localization. The reason is similar to that of the
pair of adjacent cameras which will be explained in Sect. 3.3.1.

We define P(Cj ) = [XCj
,YCj

,ZCj
]T and �CiH = lix + P(Ci), and let li =

[Xli , Yli ,Zli ]T . So there is an exclusive plane υ passing Cj and �CiH . The normal
vector of υ is w = li × �CiCj

, namely

w =
⎡
⎣Xw

Yw
Zw

⎤
⎦ =

⎡
⎣ Yli (ZCi

− ZCj
) − Zli (YCi

− YCj
)

Zli (XCi
− XCj

) − Xli (ZCi
− ZCj

)

Xli (YCi
− YCj

) − Yli (XCi
− XCj

)

⎤
⎦ . (7)
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Because υ passes through Cj and H , Cj detecting H in υ becomes a 2D problem
(Fig. 3). In order to achieve the purpose mentioned above, the camera Cj must control
the horizontal and vertical angle of the optical axis �Cj o, namely βh

j and βv
j . The

direction vector of �Cj o is lj . If �Cio is in υ , then lj ⊥ w, namely

lj · w = 0. (8)

So from (5) and (8), it is obtained that

Xw cosβv
j cosβh

j + Yw cosβv
j sinβh

j − Zw sinβv
j = 0. (9)

So the relationship between βh
j and βv

j is as follows:

βv
j = arctan

Xw cosβh
j + Yw sinβh

j

Zw
. (10)

Cj will control βh
j and βv

j according to above relationship to detect H in plane υ .

3.2 Cooperative localization of hotspots

The next is to calculate the hotspot center’s absolute coordinates which can be repre-
sented as the following function f (.) of relevant parameters:

P(H) = [XH ,YH ,ZH ]T = f
(
Wid,Hei,F,p(o),αh,αv,P (Cn),β

h
n ,βv

n,p(hn),N
)

(11)

where N is the number of the thermal cameras used to localize a hotspot, and n is the
index of the camera, n = 1,2, . . . ,N . Since there are multiple thermal camera nodes
in the TCN, we propose a method which can localize hotspots accurately with three
cameras, namely N = 3.

The thermal camera Ci transmits data to cameras in C̃. Then these cameras detect
the hotspot with the above method. To avoid “phantom” hotspot, the following pro-
cess is implemented. If Cj (Cj ∈ C̃) finds a hotspot H ′′, it will calculate the straight
line, �Cj H ′′ , which passes Cj and the hotspot using Eqs. (1)–(6), and then transmits
a set of data to Ci . The data includes P(Cj ), the direction vector of �Cj H ′′ and the
intersection of �Cj H ′′ and �CiH . If �Cj H ′′ and �CiH don’t intersect, the intersection is
defined as the point that is the intersection of their common perpendicular and �CiH .
If Cj finds two or more hotspots such as Cj or Ck in Fig. 4, it will transmit all the
data of these hotspots to Ci . However, only one of them is H , and others can generate
“phantom” hotspots. Ci can receive sets of data from some cameras and some inter-
sections are generated on �CiH . In normal cases, the straight lines intersecting �CiH

at H are more than the ones intersecting at a “phantom” hotspot. On other words, the
intersections related to H are more, and they are closer apart. So two intersections
between which the distance is shortest are the most possible points related to H . We
assume they are the intersections of �CiH and two lines (�Cj H and �CkH ). Then the
node Ci starts to calculate the absolute coordinates of H with the three lines, namely
�CiH , �Cj H, and �CkH , and the other cameras will go on searching other hotspots.

The method of calculating the coordinates with three cameras is provided as fol-
lowing. If 3 cameras obtain a particular hotspot, 3 straight lines can be obtained using
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Fig. 6 Estimating the center of
detected hotspot

Eqs. (1)–(6), namely �CiH , �Cj H and �CkH . The intersecting point of these lines is
the center of the hotspot, namely H . However, in practice, these lines cannot in-
tersect at a point because of the effect of error and noise. Thus, the next step is to
estimate P(H). Let ‖Q, �AB‖ denote the distance from a point Q to a straight line
�AB . H is approximated to the point H ′ which minimizes

∑
n=i,j,k ‖H ′, �CnH ‖. For

convenience in calculation, P(H ′) is estimated by the following procedures.
We assume two points, Qi and Qj , are a pair of closest points which are on �CiH

and �Cj H , respectively. In other words, Qi and Qj are the intersections of the com-
mon perpendicular of �CiH and �Cj H . So{

(P (Qi) − P(Qj )) · vi = 0,

(P (Qi) − P(Qj )) · vj = 0,
(12)

where P(Qi) = P(Ci)+‖Ci,Qi‖ · vi , P(Qj ) = P(Cj )+‖Cj ,Qj‖ · vj , and vi and
vj are the direction vectors of �CiH and �Cj H . The coordinates of Qi and Qj can be
obtained by solving (12). They are⎧⎪⎨

⎪⎩
P(Qi) = (P (Cj )−P(Ci))·[(vj ·vi )vj −(vj ·vj )vi ]

(vi ·vj )2−(vi ·vi )·(vj ·vj )
· vi + P(Ci),

P (Qj ) = (P (Ci)−P(Cj ))·[(vi ·vj )vi−(vi ·vi )vj ]
(vj ·vi )

2−(vj ·vj )·(vi ·vi )
· vj + P(Cj ).

(13)

The coordinates of the midpoint between Qi and Qj , denoted as Qi,j are

P(Qi,j ) = (
P(Qi) + P(Qj )

)
/2. (14)

If there are only two thermal camera nodes, Qi,j can be considered as the hotspot
center. However, two cameras bring significant error to the coordinates. If error is
too large, the thermal management system cannot cool the hottest region. Since there
are multiple thermal camera nodes in the TCN, three cameras are used to improve
the precision of measurement which has been proved by experiments below. If three
cameras find the hotspot, 3 points are obtained, Qi,j , Qj,k, and Qk,i , from lines,
�CiH , �Cj H and �CkH . The incenter, namely the center of the inscribed circle, of the
triangle �Qi,jQj,kQk,i is considered as the point H ′ (Fig. 6). So that

P
(
H ′) =

⎡
⎣XH ′

YH ′
ZH ′

⎤
⎦

= [P(Qi,j ),P (Qj,k),P (Qk,i )] × [‖Qj,k,Qk,i‖,‖Qk,i ,Qi,j ‖,‖Qi,j ,Qj,k‖]T
‖Qj,k,Qk,i‖ + ‖Qk,i ,Qi,j‖ + ‖Qi,j ,Qj,k‖

(15)
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Fig. 7 Types of hotspot. (a) “Sphere”; (b) “horizontal cylinder”; (c) “vertical cylinder”; (d) “horizontal
plan”; (e) “vertical plane”

So far, the absolute coordinates of the hotspot center have been detected and lo-
calized in a 3D space without assuming any a priori information about the layout of
datacenter. However, the performance of the proposed solution (in terms of minimiz-
ing detection time and error distance) for hotspot detection and localization can be
improved if we have a priori information. We are currently working on evaluating the
proposed techniques on a real testbed at the NSF Center for Autonomic Computing,
Rutgers University, with a priori information about our machine room layout.

3.3 Experimental evaluation

In this section, we present detailed simulations and experiments of TCNs. We use
MATLAB to simulate cooperative detection and localization algorithms. Each simu-
lation and experiment is performed case by case to show the performance of TCNs.

The system parameters in simulation are as follows. The size of the datacenter is
20 m × 20 m × 2 m. There are 4 thermal camera nodes at the ceiling corners. All
the cameras can pan and tilt automatically, and the rotation angles are known. The
maximum error of rotation angles is 0.5◦. In practice, a thermal camera node contains
a FLIR PathFindIR thermal camera and an advanced wireless sensor node platform,
Intelmote2. The thermal camera has a temperature measurement range of −40 to
80 °C with temperature resolution less than ±1 °C. It has a low resolution uncooled
microbolometer detector, and can display thermal images of up to Wid × Hei pixels
(Wid = 320 and Hei = 240). Each image pixel provides temperature data, and the
accuracy is ±2 °C. Focal length of the thermal cameras is F = 50 mm, horizontal
angle of view is αh = 36◦, and vertical angle of view is αv = 27◦.

3.3.1 Performance of the TCN compared to other systems [simulation]

To compare the performance of the proposed TCN in terms of localization accu-
racy, other localization systems are used for our simulation. The first system localize
hotspots using 2 thermal camera nodes deployed sparsely, and the second system
using a pair of adjacent thermal camera nodes at the spacing of 20 cm.

Hotspots are randomly generated for testing. Since the shape of the hotspot can
affect estimation of hotspot center in thermal image, 6 types of hotspots are tested,
which are “sphere,’ “horizontal cylinder,’ “vertical cylinder,” “horizontal plane,’ “ver-
tical plane,” and “random.” All their volumes are the same and their shapes are illus-
trated in Fig. 7. In total, 600 hotspots are generated with 100 hotspots of each type.
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Fig. 8 Localization accuracies of different systems via types of hotspots

“Error distance” is used as the metric to evaluate the accuracy, which is the dis-
tance between the real location and estimated location of the hotspot’s center. Fig-
ure 8 illustrates the average error distance of using the TCN, two cameras deployed
sparsely, and a pair of adjacent cameras. It is shown that the TCN has the best ac-
curacy because it utilizes multiple cameras to reduce error distance, and the perfor-
mance does not vary much, depending upon their shapes. We find that the error is
from rotating camera angles, quality of temperature detectors, and estimation of the
hotspot center. The most significant cause is estimating the hotspot center in the ther-
mal image. Since the hotspot center in the image is not a clear point like a corner in
the visible image, calculating and estimating location of the centers in the thermal
image cause an inevitable error.

From the results above, it is also found that the system using a pair of adjacent
cameras shows much worse accuracy than the other two systems. Other than afore-
mentioned causes of errors, the most important error in this case is the position of
cameras. If the angle between two optical axis of cameras to the far hotspot center is
close to zero, the estimated distance from the cameras to the hotspot center is too sen-
sitive to detect it correctly. For example, if the distance between two cameras is 0.2 m
and the distance between a hotspot and the center of two cameras is 10 m, the angle
is 1.15◦. If error in estimating this angle is −0.1◦, the error of distance is 0.91 m,
which is not acceptable because the room size is comparably small. Thus, a pair of
adjacent cameras cannot estimate the locations of far hotspot centers accurately.

3.3.2 Effectiveness of using multiple cameras [simulation]

This simulation is designed to evaluate the accuracy of localization of hotspots which
appear at different locations. Since the distance between the camera and the hotspot
can affect the resolution of the hotspot in the thermal image, this simulation is con-
ducted to show the effectiveness of cooperative localization.

At first, various hotspots are generated and their centers are set in the floor, middle,
and ceiling plane of the datacenter. Then three cameras, C1, C2, and C3, are deployed
at the corners of the ceiling plane, and used to detect and localize these hotspots. The
mean error distances in these planes are 0.27, 0.25, and 0.73 [m], respectively. Every
plane is divided into 11 × 11 regions and the average error distance in each region is
calculated. Table 1 illustrates the error distances in these three planes for each region,



Thermal camera networks for large datacenters using real-time 395

Table 1 Error distances [m] of
using 3 cameras to locate
hotspots in the three planes

as well as the location of the three cameras. Bold numbers mark the regions where the
error distances are too large (>0.2 m) and the shaded regions indicate the distribution
of these regions. The ellipses indicate the large regions with relative high error. It is
found that accuracy changes with location of the hotspot and the regions with high
error distance distribute according to the locations of the cameras.

Usually, 2U or 3U (1U = 4.445 [cm]) chassis are used in datacenters, and the dis-
tance between two adjacent servers is about 0.09 or 0.13 [m]. Error distance should
be less than these values to identify the location of hotspots. Hence, we design an-
other simulation that can satisfy this required error distance using one more additional
camera. Four cameras are used in the following experiment, and simulation condi-
tions are the same as the previous simulation. After three random cameras localize a
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Table 2 Error distances [m] of
using 4 cameras to locate
hotspots in the three planes

hotspot, a set of three cameras that generate minimal error distance near the hotspot
are selected, according to the relation between error distribute and the locations of the
cameras. And then these cameras localize it again. The average error distance using
four cameras in every region is illustrated in Table 2. The mean error distances in the
three planes are 0.10, 0.09, and 0.09 [m], showing approximately 4.5 times improved
accuracy in distance compared to the mean error distances using three cameras.

3.3.3 Performance in case of different size and shapes of hotspots [simulation]

Because the thermal cameras used in the TCN cannot zoom, this simulation is de-
signed to examine the effects of the volume of hotspots on accuracy. The simulations



Thermal camera networks for large datacenters using real-time 397

Fig. 9 Error distances of cooperative localization with different volumes of hotspots

are performed to localize sets of hotspots that are generated at various volumes with
different types. Every set consists of 6 types of 100 hotspots, and the volume of each
type is equivalent to the volume of a sphere with the diameters ranging from 0.2 m to
1.1 m at intervals of 0.1 m.

Figure 9 illustrates the error distance of hotspots of different volumes using a
TCN. It shows that error distance increases as the volume increases. This is because
cameras cannot obtain a whole hotspot in the thermal image if it is too big, and so the
coordinates of the hotspot center in the image is estimated inaccurately. This problem
can be solved by adaptively controlling threshold temperature to redefine hotspots.

4 Extraction of characteristics of hotspots

As mentioned above, hotspots can cause a number of problems. If the thermal moni-
tor network knows where and how is the hotspot, and based on this to speculate why it
appears, the most effective way can be selected to remove it. Thus, this section intro-
duces the extraction of some characteristics of the hotspot, including one-dimensional
scalar characteristics and a two-dimensional shape characteristic. Shape characteris-
tic can be saved as image formats, however, the low data rate of IEEE 802.15.4,
wireless sensor network protocol, limits the capacity of sending multimedia data. We
thus propose an efficient compression algorithm for the hotspot shape, sculpturing
algorithm, to minimize communication cost. This algorithm only extracts isotherm
lines at different temperatures to compress, and shows better performance compared
to other methods.

4.1 Extraction of scalar characteristics

Scalar characteristics contain aforementioned absolute coordinates of the hotspot
center obtained by multiple cooperative thermal cameras nodes, and some charac-
teristics calculated by a single node with the thermal image after localization. Some
characteristics are selected according to computational complexity and importance.
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Relative and real area of hotspots Area reflects the size of influenced region by the
hotspot. Relative area, namely area of the hotspot in the thermal image, is expressed
by the number of pixels. It is

A =
∑

[x,y]T ∈ξ

1 (16)

where ξ is the region of the hotspot in the thermal image.
Because of distance and angle of the thermal camera, real area of the hotspot

cannot be directly obtained by the processing node from the thermal image. After the
base station receives other characteristics, it will estimate the real area based on the
map of the datacenter:

S = AL2

s2F 2 cos〈v1,v2〉 (17)

where L is the distance between the camera and the hotspot, s is resolution of the
image (pixels/cm), F is the focal length of the camera, v1 is the direction vector from
the camera to the hotspot center, v2 is the unit normal vector of the surface of the
equipment on which the hotspot appears, and cos〈v1,v2 >〉 = v1 · v2/(|v1| · |v2|). v2

is obtained based on coordinates of the hotspot and the map of the datacenter.

Maximal and average temperature Maximal and average temperature of the hotspot
are the fundamental characteristics, which roughly reflect its influence on the elec-
tronic equipments and the order to be eliminated. Each pixel value in the thermal
image is corresponding to a temperature data, so the maximal temperature is that

Tmax = f ′(max
(
I (x, y)

))
, [x, y]T ∈ ξ, (18)

and the average temperature is that

T̄ = 1

A

∑
[x,y]T ∈ξ

f ′(I (x, y)
)

(19)

where I (x, y) is the pixel value at coordinates [x, y]T in the thermal image, and f ′(.)
is the index function from pixel value to temperature value.

Variance Variance indicates temperature change in the hotspot region. It is

σ 2 = 1

A

∑
[x,y]T ∈ξ

(
f ′(I (x, y)

) − T̄
)2 (20)

Tests show that the variances of hotspots in thermal images vary with different loca-
tion of hotspots. For example, the variance of the hotspot suspending in air, such as
the hotspot produced by hot air ejected from outlet, is less than that of the hotspot
on the surface of the computing node. Because air convection can even temperature
field, and, contrariwise, irregular surface of the computing node can complicate tem-
perature field. Thus, medium of the hotspot can be speculated from variance.
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Fig. 10 Compression of an
isotherm of hotspot

4.2 Extraction and reconstruction of shape characteristic

For the sake of further realizing the characteristics of the hotspot, its shape and gra-
dient in different time need to be transmitted to the base station to save. Since mul-
timedia data (thermal images) cause huge overhead in terms of communication and
storage, we propose a novel domain-specific compression algorithm “sculpturing al-
gorithm” to minimize this overhead in this section. The sculpturing algorithm cannot
compress images, but can compress the hotspot’s shape data and represent its gradi-
ent. We use real thermal image obtained in the datacenter to evaluate the performance
of sculpturing algorithm in the following section. Plus, considering the low calculat-
ing ability of sensor nodes, the method of extraction should be low complexity. Thus
“sculpture algorithm” is proposed to implement asymmetrical extraction and recon-
struction.

4.2.1 Compression of an isotherm in sculpturing algorithm

In this section, compressing an isotherm of the hotspot is explained, where a hotspot
region ξ is surrounded by an isotherm line l. At first, a binary image I of an isotherm
line from a thermal image is obtained (Fig. 10(a)). Then I of size is Hei × Wid pixels
is divided into N × M squares. Figure 10(b) illustrates an example of division of an
image showing that I is divided into 3 × 4 squares. Let the side length of the square
is m pixels, N is 
Hei/m� and M is 
Wid/m�. In every square, the percentage of the
region belonging to ξ is calculated. The percentage in ith square is denoted as pi . It
is considered as the information of the isotherm of ξ (Fig. 10(c)).

The parameters of m and quantization length affect the granularity of the hotspot.
In turn, they define the degree of accuracy when reconstructing hotspots. A small
number of m can divide I into more squares and the more bits of quantization length
can represent an more accurate value. Thus, finer hotspots can be reconstructed with
a small number of m and high number of quantization length, but more bytes are
needed to transmit and store. This tradeoff can be adjusted by considering the required
granularity of the hotspot.

4.2.2 Reconstruction of an isotherm in sculpturing algorithm

The reconstruction process is more complex than the compression process. At first,
N × M squares are used to form an empty image I ′. Now the region of ξ can be
roughly defined in I ′. If the ith square region contains part of ξ , namely pi > 0, all
the pixels in it are set as black (p′

i = 1); or white (p′
i = 0), otherwise. The rough

region is shown on Fig. 11(b).
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Fig. 11 Reconstruction of an isotherm of hotspot

Then a finer isotherm will be estimated. These square regions are divided into 3
groups. Group 1 consists of the square regions in which p = 0. It means that these
square regions don’t contain any part of ξ . Group 2 consists of the square regions in
which 0 < p < 1. This means that part of the square region belong to ξ . Namely, the
edge of ξ is in these squares. Group 3 consists of the square regions in which p = 1.
It means that the entire square region belongs to ξ . Thus, it is unnecessary to process
the regions in Group 1 and 3. Only the regions in Group 2 need to be processed to
obtain a finer isotherm of ξ . Now all the p′ in these regions are 1, namely all the
regions are black. These black regions will be continually “sculptured” until p′ = p

in every region.
“Sculpturing” once includes two steps. Since the edge of ξ is curved line, the

angular pixels are chipped away in the first step. An angular pixel is defined as a black
pixel in whose 4-connected neighborhood at least 2 pixels are white. In the second
step, an eroding process is implemented on the edge of the black region. Namely, the
black pixels at the edge of ξ are changed into white. In the process of “sculpturing,”
the change of p′ is monitored in every square. If p′

i = pi , the sculpturing process
is stopped in the ith square region. Through multiple sculpturing, the percentage
of black area in each square region is equal to the one in corresponding square in
compression, namely p′ = p. All the black regions are considered as ξ ′ (Fig. 11(c)).

After the sculpturing process, the edge of ξ ′ in I ′ will be smoothed. A blur process
(such as Gaussian blur gγ (x, y) = exp[−γ (x2 + y2)]) is performed on I ′ and then
I ′ is binarized (Fig. 11(d)). I ′ is redefined as the rectangular region containing ξ ′. At
last, the I ′ is resized to the size of I , so that aspect ratio of ξ ′ is as same as original
ratio (Fig. 11(e)). The isotherm has been reconstructed. The black region in I ′ is ξ ′
and the edge of ξ ′ is the isotherm line l′ (Fig. 11(f)).

4.2.3 Compression and reconstruction of multiple isotherms of the hotspot

In this section, compression and reconstruction of the hotspot represented by multi-
ple isotherm lines are explained. Figure 12 illustrates the procedures of compressing
multiple isotherm lines in an actual thermal image obtained in a datacenter. At first,
the point at the highest temperature Ttop in a hotspot region is found. Then several
surrounding isotherm lines denoted as li (i = 0,1, . . .) are extracted. The isotherm
line at the threshold temperature Tth is denoted as l0. For multiple isotherm lines
with temperature gradient �T , higher isotherm lines than l0 are denoted as li where
i = 0,1, . . ., and the temperature of li is Tth + �T · i.

As �T decreases, more isotherms exist and more details can be represented, but
this extra data must be transmitted. The region surrounded by li is denoted as ξi . The
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Fig. 12 Compression of
multiple isotherms

rectangular region containing ξi is represented by its height, width, and coordinates
of its top-left corner which are denoted as hi , wi , and [xi, yi], respectively. The 2D
shape characteristic of ξi is compressed separately by the sculpturing algorithm as in
Sect. 4.2.1. For the communication, related parameters are added to the data packet
that will be transmitted. The parameters include Ttop, Tth, �T , and every isotherm’s
parameters which include original size and location of the isotherm li , namely hi , wi

and [xi, yi], the numbers of squares, namely Ni and Mi , and the information of ξi .
As soon as the base station receives the information ξi , the hotspot will be re-

constructed in an image (Fig. 13). At first, all the isotherms l′i are reconstructed by
extracting Ni , Mi , and the information of ξi , based on the sculpturing algorithm.
Then, according to hi and wi , the rectangular region containing l′i is resized. All the
isotherms l′i are overlaid based on [xi, yi]. Then, the hotspot with multiple isotherms
is reconstructed. Finally, the temperature at every isotherm is calculated by Tth and
�T , so that the temperature gradient around the hotspot is represented.

4.3 Experimental evaluation

In this section, we use real thermal images to present the performance of our sculp-
turing algorithm. To evaluate the sculpturing algorithm, the error, compression gain,
and complexity are compared with that of other algorithms.

4.3.1 Granularity and error [experiment]

In this simulation, the influence of parameters on the sculpturing algorithm is tested.
First, the error of reconstruction is defined. If the region surrounded by the original
isotherm is ξ and the reconstructed region is ξ ′, the error is the percentage of differ-
ence between ξ and ξ ′ in the area of ξ . The parameters including the side length of
the square, namely m and the number of quantization bits can affect the granularity
and error.
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Fig. 13 Reconstruction of
multiple isotherms

Fig. 14 The curves of the error

Five hundred thermal images are randomly chosen, each of which contains a
hotspot. To decrease the interference of other parameters, the regions of hotspots
are resized to the same size, Hei = 240 and Wid = 320. The shapes of hotspots are
compressed and reconstructed with the different m and number of quantization bits.
Figure 14 shows the results pertaining to error. It is seen that the performance using 6
bits of quantization is very close to the ideal case and error increases proportionally
with m.
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Fig. 15 A hotspot is represented by similar geometrical figures. In (b) and (c), the gray regions are the
represented hotspots, and the black lines are the edges of the original hotspot for comparison

4.3.2 Compression gain [experiment]

The sculpturing algorithm is proposed to minimize data used in transmitting shape
characteristic of the hotspot. The shape characteristic also can be saved as a com-
pressed image with low resolution, a corresponding ellipse, or the smallest convex
polygon. Thus, in this section, the compression gain required by sculpturing al-
gorithm and other algorithms are evaluated. At first, the hotspots which contain 3
isotherms are saved by the sculpturing algorithm. The numbers of quantization bits
are 8, 6, and 4 and the numbers of squares are 3 × 4, 6 × 8, and 12 × 16, respectively.
The size of files and the errors are listed in Table 3(a). It is found that the highest
quality representation uses 594 Bytes, with 8 quantization bits and 16 × 12 squares.
Then these hotspots are saved by some common image algorithms, such as BMP,
GIF, and JPG. The parameters and size of files are shown in Table 3(b). It is found
that the GIF format in black and white produces a minimal file size, but is still larger
than the one produced by the sculpturing algorithm.

These hotspots are also represented by corresponding ellipses and the smallest
convex polygon such as Fig. 15(b) and 15(c). Table 3(c) and 3(d) illustrate compres-
sion gain by showing the required data size (bytes) and the reconstructing error. It
can be seen that the required data size by corresponding ellipses is the least, but the
error is largest.

Our proposed sculpturing technique outperforms common image algorithms,
when the number of hotspots, and hence the number isotherms to be represented
are less (which is usually the case as we are interested only in high temperature re-
gions). When the number of isotherms is increased (for higher level of detail), sculp-
turing loses its advantage. However, this problem can be overcome by using image
segmentation so that each segment in turn has fewer number of hotspots, and hence
isotherms.

4.3.3 Algorithm complexity [experiment]

Because of power requirement and processing ability, the complexity of compression
in the sculpturing algorithm should be low. Running time in this experiment is used
to measure all the algorithms’ complexity. One hundred hotspot images are used, and
every one is saved 100 times by an algorithm. All the algorithms run under the same
hardware condition. Then the average time consumed by an algorithm is calculated
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Table 3 The size of files saved by different image compression methods

(a) Sculpture Algorithm

Squares Quantization 8 bits 6 bits 4 bits

3 × 4 Bytes 54 45 36

Error 7.70 % 7.71 % 10.66 %

6 × 8 Bytes 162 126 90

Error 3.89 % 3.92 % 4.03 %

12 × 16 Bytes 594 550 306

Error 0.76 % 0.77 % 1.08 %

(b) Image Algorithm

Type Color
Depth

RGB
8 bits

Grayscale
4 bits

B & W
1 bits

BMP Byte 20,278 9,718 2,462

GIF Bytes 13,509 4,288 727

JPG Compress 100 % 60 % 0 %

Bytes 10,034 3,431 2,122

(c) Corresponding Ellipse Algorithm

Quantization 8 bits 6 bits 4 bits

Bytes 12 9 6

Error 30.38 % 30.71 % 34.40 %

(d) Convex Hull Algorithm

Quantization 8 bits 6 bits 4 bits

Bytes 179.76 134.82 89.88

Error 20.84 % 21.84 % 24.98 %

Table 4 Relative running time of all the algorithm

Algorithm Sculpturing BMP JPEG GIF Convex
hull

Corresponding
ellipse3 × 4 6 × 8 12 × 16

Relative Time 1 1.3367 2.8545 3.3372 3.682 5.5315 11.2781 25.9584

(Table 4). For the sake of contrast, relative time is used. It can be seen that the sculp-
turing algorithm takes the shortest time. This implies that its complexity is lowest.

In the above experiments, the error, compression gain, and the complexity of all
the algorithms are compared. Although the hotspots can be represented by image al-
gorithms with no errors, the data size are the greatest. Although the required data
size by the corresponding ellipse algorithm is least, the error is the largest and the
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Fig. 16 Classification tree

Table 5 Accuracy of recognize
four scenarios Scenario 1 2 3 4

Accuracy [%] 98.8 98.1 97.5 96.3

complexity is too high. The results of the convex hull are not satisfactory. The exper-
imental results show that the sculpturing algorithm is most suitable for the TCN. Its
complexity is the lowest, while error and data size meet the requirements.

4.3.4 Preliminary attempt on application of hotspots’ characteristics

Characteristics of hotspots are employed to understand the specific thermal behavior
of datacenters, and hence to cool hotspots effectively. If the causes of the hotspots are
known in addition to their characteristics, selectively choosing and cooling hotspots
could be readily done autonomously. In this section, we give a brief idea to classify
causes of hotspots using different temperature thresholds for different causes. For
example, we can use a classification tree (Fig. 16) with three different thresholds (T ′,
S′, and σ ′) to classify four different thermal status of our server rack, which are (1) all
computing nodes are fine (Fig. 17(a)), (2) a computing node overloads (Fig. 17(b)),
(3) a single computing node’s fan fails (Fig. 17(c)), and (4) the main fan of the rack
fails (Fig. 17(d)). If status 2, 3, or 4 turns out to be true, different types of cooling
decisions can be made such as executing job migration, increasing compressor cycle,
or increasing fan speed. If the hotspot appears due to the local or main fain failure of
the node, the central management unit can request manual repair. As our focus is not
the classification of causes of hotspots, we only show the feasibility of our framework
in this section.

In the experiment, about 100 real thermal images in each scenario are used. Ta-
ble 5 shows the accuracy of recognition. We can consider that the cause relates
these characteristics and can be automatically recognized. Certainly, there are many
other causes for hotspots, thus in future work, we will study related characteristics of
hotspots to recognize more causes in a real datacenter.
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Fig. 17 Thermal images of the rack in four scenarios. The fifth computing node on the top overloads in
Scenario 2, and its fan fails in Scenario 3

5 Conclusion

This paper proposes a thermal monitor network for datacenters which includes the
base station, a scalar sensor network, and a thermal camera network. The nodes in
the scalar sensor network are deployed at significant spots, such as inlets, outlets,
and vent tiles, to monitor temperature, humidity, or airflow. Every node in the ther-
mal camera network contains a thermal camera that is used to thermally monitor the
datacenter in high granularity. The main focus of this paper is to extract hotspots’
characteristics using the thermal camera network, including the absolute coordinates,
temperature, size, gradient, and shape. This paper especially proposed a sculpturing
algorithm to compress the data of the hotspot’s shape characteristic in transmission
and store. These characteristics can be used to know more about hotspots. They are
supposed to optimize thermal management in the future research. The experiments
prove that our thermal monitor network can accurately know where and how the
hotspots are.

Moreover, this paper indicates experimentally that hotspots’ characteristics ex-
tracted by the TCN have certain relation to the causes for generating them. Now, four
causes have been able to automatically recognized. In the future, we will study on
recognizing more causes from hotspots’ characteristics in a real datacenter.
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