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Abstract The future of human computer interaction

systems lies in how intelligently these systems can take

into account the user’s context. Research on recognizing

the daily activities of people has progressed steadily, but

little focus has been devoted to recognizing jointly activi-

ties as well as movements in a specific activity. For many

applications such as rehabilitation, sports medicine, geri-

atric care, and health/fitness monitoring the importance of

combined recognition of activity and movements can drive

health care outcomes. A novel algorithm is proposed that

can be tuned to recognize on-the-fly range of activities and

fine movements within a specific activity. Performance of

the algorithm and a case study on obtaining optimal fea-

tures from sensor and parameter values for the algorithm to

detect fine motor movements are presented.

Keywords Body area networks � Activity recognition �
Motion recognition � Classification � Support vector

machines � Accelerometer � Gyroscope

1 Introduction

The future of human computer interaction systems lies in

how intelligently these systems can take into account the

user context, e.g., how well the data that it produces

characterizes the user’s current situation. Motion recogni-

tion is a key feature of many ubiquitous computing appli-

cations ranging from rehabilitation to health care. In

general, motion recognition systems unobtrusively observe

the behavior of people and the characteristics of their

environments and, when necessary, take actions in

response, ideally with little explicit user direction. Motion

recognition aims at recognizing the actions of one or more

users from a series of observations on the users’ actions

and the environmental conditions.

Sensor-based motion recognition integrates the emerg-

ing area of sensor networks with novel data mining and

machine learning techniques to model a wide range of

human motions. Human motion recognition systems com-

posed of wirelessly connected sensor motes (equipped with

accelerometers and gyroscopes) attached to different body

sites enable a variety of applications such as rehabilitation,

sports science/medicine, geriatric care, and health/fitness

monitoring [2]. For example, such a system can be used to

measure the effectiveness of active physiotherapy, to per-

fect techniques of sport persons, to remotely monitor and

trigger emergency response for the elderly, and to help

people lose weight by providing accurate estimates of their

expended calories.

To understand human motion it is imperative to under-

stand the difference between an activity and the movements

(or micro-activities) that comprise it. A physical movement

is a body posture/gesture that typically lasts for several

milliseconds or seconds, while an activity lasts several

minutes or hours and comprises of different physical
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movements that may be repeated over time. For example, a

‘‘walking’’ activity would comprise of several short leg

movements. There has been research [4, 12, 15, 20] on

recognizing the daily activities of people such as whether a

person is walking, jogging, standing, etc. However, most

prior research has focused on activity recognition without

directly considering the movements involved in that

activity. Recognizing specific fine motor movements

within activities of individuals will help provide a clear

picture of the intensity of his/her activity. For example, in

‘‘walking’’ by knowing the number of steps (leg move-

ments) taken by the person will help calculate the pace at

which the person is walking. However, what makes

movement recognition more challenging than activity

recognition is that we are dealing with much shorter time

scales.

To the best of our knowledge, there has not been a

holistic approach proposed in the literature that addresses

the challenges of using wireless wearable systems to rec-

ognize on the fly activities as well as the movements within

a specific activity. We propose a simple, yet effective,

window-based algorithm that can be tuned to recognize on-

the-fly either activities or movements in a specific activity

using a supervised learning approach based on Support

Vector Machines (SVMs). Our approach involves a sepa-

rate tuning phase to find optimal parameter values so as to

maximize classification accuracy. In addition, we use

multiple inertial data—linear acceleration values (collected

using accelerometers) and angular rate of motion (collected

using gyroscopes)—to recognize movements and activities.

As using all the raw data (acceleration and angular rate)

would be highly inefficient, meaningful features such as

mean, standard deviation, maximum, peak-to-peak, root-

mean-square, and correlation between values of acceler-

ometer and gyroscope axes are extracted.

The remainder of this article is organized as follows. In

Sect. 2, we review some of the existing work with respect

our proposed work. In Sect. 3, we discuss the classification

method for motion recognition using wearable sensors and

then introduce the proposed window-based algorithm to

recognize activities as well as movements. We further

discuss the performance of the algorithm in recognizing

activities and movements in Sect. 4. In addition, we present

a case study on parameter tuning of the algorithm for

movement recognition. Finally, in Sect. 5, we draw con-

clusions and discuss possible future work.

2 Related work

Previous work on activity recognition using acceleration

values have considered features like mean [4, 12, 15, 20],

standard deviation [12, 15, 20], maximum [4, 20], peak-to-

peak [9], root-mean-square [12] of acceleration values and

correlation of acceleration values between pair of axes of

the accelerometer [4, 20]. However, in addition to the

features collected from the accelerometer values we also

extract and use features from angular rate values (gyro-

scope value) as knowing the orientation of various points

of the body helps differentiate similar activities or move-

ments. All of these works [4, 12, 15, 20] have focused on

activity recognition without taking into account the

movements involved. However, for some applications like

behavioral study of patients and health monitoring,

knowing the activities is just not quite enough. In such

applications, knowing the movements involved would

provide further information about the nature and intensity

of the activity performed. Hence, in our work we focus on

both activity and movement recognition, and we propose

an approach that can be tuned to different timescales to be

able to recognize both activities and movements and their

starting and ending time instants.

Authors in [16] define a general framework for activity

recognition by building upon and extending Relational

Markov Networks. However, while the work is valuable,

the authors introduced some constraints like one activity

per location, which is improbable in real life. In [14], the

authors introduce a sensor and annotation system for per-

forming activity recognition in a house setting and used

probabilistic models to learn the parameters of activities in

order to detect them in future sensor readings. In [2], the

authors discuss activity recognition results for stereotypical

hand flapping and body rocking using data collected from

children with autism in both laboratory and classroom

settings; they also present a case study on the various

challenges encountered when applying machine learning

for recognizing activities. In [9], the authors show that

movements have a grammatical framework such as a

spoken language and introduce a linguistic framework for

symbolic representation of inertial information by con-

structing primitives across the network of sensors for each

movement and then using a decision tree. In [11], the

authors formulate activity recognition as a pattern-based

classification problem, and propose a novel emerging pat-

tern-based approach to recognize sequential, interleaved,

and concurrent activities. There is also some work on

gesture recognition using accelerometers. In [18], the

authors present uWave, a recognition algorithm using a

single three-axis accelerometer to address the challenges in

gestures recognition. In [28], the authors represent a hier-

archical model to recognize both simple gestures and

complex activities using a wireless body sensor network.

The computer vision community has conducted research

on human motion recognition using time frames of a video

sequence [8, 19]. However, the downside of these tech-

niques is that processing video data is very costly and also
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an external infrastructure is required, e.g., (infrared) cam-

eras, which may be biased by environmental conditions

such as background light or heat. Also, such techniques

cannot be directly applied to those scenarios that require

privacy of the subject or of a third party (and this problem

cannot simply be solved by blurring the images). Con-

versely, inertial sensors like accelerometers and gyroscopes

are unbiased by environmental conditions and give a good

accuracy for motion analysis. In addition, motion recog-

nition systems using inertial sensors can be used in appli-

cation where privacy is an important issue as these systems

can be trained to recognize only specific predefined activ-

ities or movements.

Recently, activity recognition systems have found many

application areas like health care and assisted living,

industrial, entertainment, and gaming. In [3, 6, 13, 17, 25],

the authors present systems for person fall detection as well

as health threats by monitoring vital signs. A system has

been proposed in [23] that uses information gathered from

wearable and environmental sensors for tracking activities

of workers in car manufacturing plants, e.g., to provide

real-time feedback to the worker about upcoming assembly

steps or to issue warnings when procedures are not properly

followed. In [5], authors discuss a system that employs

wearable inertial sensors combined with machine learning

techniques to record, classify, and visualize the motion of

dancers. However, none of these systems have employed a

holistic approach to recognize on-the-fly activities and

movements especially for behavioral study of people.

3 Proposed work

In order to recognize on-the-fly human physical activities

such as walking, running, driving, dancing, gesturing or the

specific movement types composing these activities, the

proposed wearable system (1) collects raw data by dis-

tributed sensing and (2) employs supervised learning

methods to identify activities and movements through

localized computation. Interestingly, the system is inher-

ently unobtrusive (not interfering with the user’s day-to-

day lifestyle) and ensures privacy unlike camera-based

solutions (as it is trained to recognize only a predefined set

of activities or movements). It also generates recording of

user’ behavior with little or no subject reactivity (user’s

behavior is unlikely to change as there is no or less inter-

ference by the system); these features enable research

studies with higher internal consistency and support indi-

vidually tailored treatment regimes especially when used

for health monitoring [26, 27].

The proposed approach can be used for either activity

recognition or movement recognition. According to our

approach, we first pursue the activity recognition phase,

which is then followed by the movement recognition phase

that uses the same window-based algorithm (although it is

separately trained and uses different parameters). The

algorithm is based on machine learning, which requires

training the system to the type of activities or movements

that need to be recognized. First, we discuss the classifi-

cation method used; then, we explain the various phases

involved in our approach for human motion recognition.

Finally, we describe and provide details of the window-

based algorithm for recognizing activities or movements.

3.1 Classification method

Recognizing or classifying data is a common task in

machine learning; if there are some data points each

belonging to either one of two classes, the goal is to decide

which class a new data point will be in. In SVMs [7], a data

point is viewed as a p-dimensional vector; the objective is

to separate such points using a (p-1)-dimensional hyper-

plane as it is shown in Fig. 1. A hyperplane can be defined

as,

FðxÞ ¼ w � xþ b; ð1Þ

where x is the vector to be recognized and w is the normal

vector to the hyperplane, which can be derived as,

w� ¼
Xl

i¼1

ai� � yi � xi; yi 2 f�1; 1g; ð2Þ

subject to the condition,

ai�½yi � ðw�T xi þ b�Þ � 1� ¼ 0; 8ai 6¼ 0; ð3Þ

Fig. 1 Support vector machine (SVM)
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where l is the number of support vectors (samples on the

margin), ai is the ith Lagrange multiplier, and b determines

the offset of the hyperplane from the origin along the

normal vector w.

The function of the hyperplane in (1) is not suitable for

solving more complicated, linearly non-separable problems

and when dealing with more than two classes. Kernel

function maps data into a high-dimensional space where the

hyperplane can easily do the separation. We train the algo-

rithm using the SVM-based machine learning toolbox

available in Matlab (called ‘‘Spider’’ [22]) with RBF as the

kernel (according to our experiments, this kernel is the most

robust). To classify multiple classes, i.e., in our case mul-

tiple activities or movements, there are two common

methods by which a classifier distinguishes—(1) ‘‘one-

versus-all’’ (one of the labels to the rest) or (2) ‘‘one-versus-

one’’ (between every pair of classes). We used ‘‘one-versus-

one’’ method as it gave us the best results and also high-

lighted in [10] when the number of training samples is very

large, the training can become problematic, and then ‘‘one-

versus-one’’ strategy appears more suitable for practical use.

3.2 Problem formulation

Our approach for recognizing activities (or the movements

in a specific activity) consists of three phases—training,

tuning, and motion recognition, as shown in Fig. 2. In the

training phase, the SVM is trained with sets of linear

acceleration values (from accelerometers) and angular rate

values (from gyroscopes) for each activity (or movement)

types (depending on whether we want to recognize the

activity or the movements in a particular activity). The

tuning phase is then used to tune the parameters involved in

our algorithm so as to improve the accuracy of recognition.

We mainly tune the parameters when it involves recog-

nizing the movements in a particular activity as movements

have very shorter time scales compared to activities. In the

motion recognition phase, once the SVM is trained with

activity (or the movement) types, we use a novel window-

based algorithm to recognize the activities or the move-

ment types. As shown in Fig. 2, we have combined both

activity and movement recognition under the phase motion

recognition. In addition, in the motion recognition block

we have shown a feedback from the movement recognition

phase to the activity recognition phase, which can be

exploited to improve the accuracy of the activity phase by

using the outputs of the movement recognition phase.

Before explaining the proposed algorithm, let us define

the parameters used to represent an activity or the move-

ments within a specific activity in the training phase. We

represent D as the training set, which is a set of activities or

movements (depending on whether it is activity or move-

ment recognition), which includes many observations of

the same type of activities or movements. Hence, without

loss of generality, D is a set of P observations of activities

(or movements) irrespective of the types or classes such

that each activity or movement p ¼ 1; 2; . . .;P: In addition,

let f be the set of R types (or classes) of activities or

movements considered for training, given as,

f ¼ fC1; C2; . . .; Cr; . . .; CRg; where 8p ¼ 1; 2; . . .;P and

p! Cr if the pth activity or movement is of type Cr (rth

activity or movement type) considered for training, where

r ¼ 1; 2; . . .;R: Each activity or movement p can then be

associated with any but only one of the activity or move-

ment type in f such that R � P.

Further, we represent S as the set of sensor nodes used

to collect both linear acceleration and angular rate values

from different body sites such that s ¼ 1; 2; . . .; jSj: As

mentioned before, we do not use the collected raw values

as such for training but we extract a set of features from the

raw values. We represent F as the set of features extracted

from N sub-intervals (not from the entire time interval)

from each axis of the accelerometer and gyroscope for each

activity or movement p such that each feature f ¼
1; 2; . . .; jF j: Using all the parameters, vp

s represent the pth

activity or movement with respect to a sensor node s, and

is given as, vp
s = [vp

sx, vp
sy, vp

sz], where

vsx
p ¼ ½f 1x

1 ; f 1x
2 ; . . .; f 1x

jF j; . . .; f nx
1 ; . . .; f nx

jF j; f Nx
1 ; . . .; f Nx

jF j� ð4Þ

denotes the set of features extracted from the x-axis of the

accelerometer and x-axis of the gyroscope attached to the

sensor node s. Then, using the features extracted from the

readings from all the sensor nodes pth activity or

movement i.e., vp can be represented as,

vp ¼ ½v1
p; v

2
p; . . .; vs

p; . . .; vjSjp �: ð5Þ
Fig. 2 Phases involved in motion recognition
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Finally, the entire training set D can be represented as,

D ¼ fðv1; C1
r Þ; . . .ðvp; Cp

r Þ; . . .; ðvP; CP
r Þg; Cp

r 2 f: ð6Þ

Once the training phase is complete, we derive the

normal vector w to the hyperplane as shown in (3) using

the support vectors and the Lagrange multipliers [7]

obtained from the SVM, which is then used to recognize

the current activity or the movements in a particular

activity during the recognition phase using the window-

based algorithm. We define here the new concept of

confidence, which forms the basis of our recognition

algorithm. For a generic vector x, we define its confidence

as its distance from the hyperplane (w, b) as,

dðw; b; xÞ ¼ w � xþ b

jjwjj : ð7Þ

This distance, d(w, b; x), indicates how ‘‘confident’’ the

classifier is about the type or class of the vector x: the

larger d, the higher the confidence.

3.3 Proposed solution

We propose to use a window-based algorithm for recog-

nizing the activities or movements. We first pursue the

activity recognition phase, followed by movement recog-

nition using the same window-based algorithm [24], but

separately trained and optimized for activity and movement

recognition. Figure 3 shows both the logical (a line rep-

resenting the class) and physical representation (the raw

signal, i.e., linear acceleration and angular rate values) of

an activity and the movements in it. Hereafter, we will be

using the logical representation for our further discussion

as using the raw representation of activity and movements

would be difficult and potentially misleading.

The algorithm uses two classification windows, a

main classification window and a variable size small

classification window that always moves only within the

main classification window, as shown in Fig. 4. We define

the intervals of activity (or movement) and main classifi-

cation window to be as [tp
in, tp

fin] and [tmw
in , tmw

fin ], respec-

tively. In addition, we also consider two other intervals,

Tmin and Tmax, which we define as, respectively, minimum

and maximum time intervals. Based on the demonstrated

success for recognizing activities in previous works [4, 20]

on accelerometer-based activity recognition using a win-

dow size of 32 samples with 16 samples overlapping

between consecutive windows, we fixed the value of Tmax

and Tmin to be 32 � 0:05; where 0.05 is the sampling time in

seconds. The above definition holds only for activity rec-

ognition. While for movement recognition, Tmax and Tmin

are, respectively, minimum and maximum time intervals

among all the movement training samples irrespective of

the movement types. Consequently, the following rela-

tionships hold,

Tmin ¼ min1� p�P tfin
p � tin

p if p is movement

32 � 0:05 if p is activity

�
ð8Þ

Tmax ¼ max1� p�P tfin
p � tin

p if p is movement

32 � 0:05 if p is activity

�
ð9Þ

We vary the size of small classification window interval T

as,

T ¼ Tmin þ ðh� 1Þ � d; ð10Þ

where h ¼ 1; 2; . . .;H and H ¼ Tmax�Tmin

d

j k
þ 1:

The main classification window interval (Fig. 4) is

always set to Tmax and is shifted over the entire time

interval that needs to be recognized. For each h value, as

given in (10), there is a small classification window

interval T. The number of small classification windows

within the main classification window H depends on Tmin

and the d value. The small classification window is shifted

Fig. 3 Logical and physical representation of activities/movements Fig. 4 Classification windows applied on activities and movements
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by D within the main classification window for each T

value, until it reaches the end of the main classification

window. The number of such shifts is represented by K. For

each shift within the main classification window, the con-

fidence is calculated as in (7). Once the confidence for all

the small classification windows within the main classifi-

cation window is computed, we (1) select three intervals

with the best confidence out of those initially considered,

and (2) check for any (unfeasible) overlap in their time

intervals. If there is any overlapping windows, we combine

those time intervals and then compute the confidence for

the combined interval. If there is no overlapping window,

then we avoid those window intervals that have confidence

less than the average confidence among all the small

windows considered within the main classification win-

dow. The recognized activity/movement will be the class

indicated by the SVM for the window interval that has best

confidence. Once the activity/movement is recognized, the

main classification window is shifted by the recently rec-

ognized time interval. Algorithm 1 summarizes the pseudo-

code of the described window-based algorithm.

The performance of the algorithm depends on the fol-

lowing parameters—(1) Right feature set F ; (2) Number of

sub-intervals N for feature extraction, (3) Number of small

classification windows H that depends on d, and (4)

Number of shifts of small classification window K that

depends on D. Hence, fine tuning is required before the

algorithm can be used for recognition. The proposed win-

dow-based algorithm can be used to recognize activities or

movements within a particular activity (once you know

what the activity is). Because activities have much larger

time interval compared to movements, we could simplify

the algorithm for activity recognition by fixing the values

of some of the parameters used. However, movement

recognition involves shorter time scales and, therefore,

optimal parameter values need to be identified using the

tuning phase.

For tuning the system to the right values of F ;N; d; and

D; we place the main classification window at the exact

location of movements in the training set and try to rec-

ognize the movements by changing values of F ;N; d; and

D. Hence, for tuning the system we feed the training data

set itself and try to recognize the activities or movements

with the training set. As a feedback metric to assess the

optimality of these parameters, we use cumulative mis-

classification ratio, the ratio of total misclassification in

time of recognized activity or movements with the total

time interval of the actual activity or movement. Once the

optimal values for F ;N; d; and D as indicated by starred

values in Fig. 2 are known, we find the optimal support

vectors to recognize movements.

For movement recognition, our algorithm works very

well for activities in which movements are not overlapping

and are time separable such as ‘‘Smoking,’’ ‘‘Drinking,’’

‘‘Working out.’’ Whereas for other activities like ‘‘Driv-

ing,’’ as there are number of movements overlapping in

time, the algorithm will still work fine but the system then

needs to be trained for the many combinations of such

overlapping movements.

4 Performance evaluation

The performance of the window-based algorithm in rec-

ognizing activities or movements in a specific activity as

well as finding their starting and finishing instants is out-

lined below. As we mentioned, the algorithm can be used

either for activity recognition or movement recognition,

only one at a time or sequentially (first activity then

movement recognition). To recognize activities, the SVM

needs to be trained for the various types of activities.

However, if the focus is on movement recognition within

an activity, then the SVM needs to be trained for the var-

ious movement types within the concerned activity. First,

we discuss how we collect acceleration and gyroscope

values for various activities and movements. Then, we

present the performance of the algorithm in recognizing

activities and movements. Finally, we present a case study

on the optimal parameter values in the window-based

algorithm. To assess the performance of the algorithm for

both activity and movement recognition, we used the

cumulative misclassification ratio as index metric.
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4.1 Data collection

For our study, we used Shimmer motes [21] for collecting

linear acceleration (using accelerometers) and angular rate

(using gyroscopes). A Shimmer mote has a triaxial accel-

erometer MMA7260Q made by Freescale and is capable of

sensing accelerations ranging from ±1.5g, ±2g, and ±6g,

where g = 9.81 m/s2. There is also a 3-axis gyroscope

board having a full range of ±500�/s. The motes were

placed on the right arm wrist and right foot of the subject as

shown in Fig. 5. Each of these motes gathered linear

acceleration (from accelerometer) and angular rate (from

gyroscope) values at 20 Hz and transmitted it wirelessly to

a destination node connected to a desktop that aggregated

all the samples and extracted the features. For data

collection we used two Shimmer motes; depending on

the specific application, however, more sensors may be

required for better accuracy.

4.2 Activity recognition

Activity recognition is the initial step in our approach. To

show the performance of the window-based algorithm in

recognizing various activities, we considered six different

activities—‘‘Walking,’’ ‘‘Standing,’’ ‘‘Writing,’’ ‘‘Smok-

ing,’’ ‘‘Jacks,’’ and ‘‘Jogging.’’ An activity is ‘‘static’’ when

there is no movement involved while performing that

activity. A ‘‘dynamic’’ activity, on the other hand, requires

movement in order to accomplish the activity. To validate

our performance of the proposed algorithm we included

three subjects (all male subjects), one with age 28 and

others of age 26. We asked the three subjects to perform all

the six activities in the order they preferred but at least 8

times. Although our experiments were carried out in a

controlled environment in which subjects were asked to

repeatedly perform specific movements (in the order they

preferred) but we believe our method will be effective in

less controlled environments when given a larger training

set that includes a wider range of movements (i.e., in field

trials).

To evaluate the performance of activity recognition we

did three case studies—(1) train separately for each subject

and recognize activities of each subject—so as to dis-

criminate against each subjects own potentially competing

behaviors, (2) train for activities of all subjects as one and

recognize the activities of each subject—as the approach

used, tests for the potential ‘‘universality’’ that is, the

device potentially could be trained on a large set of sub-

jects and then work pretty well for everyone whose

behavior is more or less the same way, and (3) train for one

subject and recognize the activities of another subject—

which is a extreme test of robustness where it really should

not work at all for a precise activity, but remarkably it

does. We show the test results of the above-mentioned

three case studies in the form of a confusion matrix that

shows the accuracy of recognition. In addition to the

above-mentioned three case studies, to evaluate the per-

formance of the algorithm in differentiating similar activ-

ities we also perform recognition on a new set of activities

that are all very similar.

4.2.1 Case 1: Train SVM separately for each subject

In this case study, we trained the SVM separately for each

subject one at a time and then tried to recognize the

activities that each of the subject performed. Out of the 8

observations for each activity, 4 observations were used to

train the SVM and the other 4 were used for testing the

algorithm. We trained the SVM for say ‘‘Subject 1’’ using

the first 4 observations and then tried to recognize the

activities performed from the other 4 observations col-

lected. Figure 6 shows the actual and recognized activities

as well as their starting and ending time instants. ‘‘Subject

1’’ performed six activities in the order—‘‘Smoking,’’

‘‘Walking,’’ ‘‘Standing,’’ ‘‘Writing,’’ ‘‘Jogging,’’ and

‘‘Jacks’’ as shown in Fig. 6. The cumulative misclassifi-

cation ratio for the activities performed by Subject 1 is less

than 1%. Similarly, Figs. 7 and 8 show the actual and

recognized time instants of the activity performed by

Subject 2 and 3, respectively, as well as the cumulative

misclassification ratio. Subjects 2 and 3 performed the

same six activities but in different order. The overall

cumulative misclassification ratio is around 1.5%.

4.2.2 Case 2: Train SVM for all subjects at once

In this case study, we trained the SVM using the first 4

observations from all subjects all at once and then tried to

recognize the activities performed by each subject using

the next 4 observations. Figure 9 shows the actual and

recognized activities as well as their starting and ending
Fig. 5 Shimmer mote and gyro board; Shimmer motes attached to a

subject
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time instants. The cumulative misclassification ratio over

time is found to be less than 1%. Similarly, Figs. 10 and 11

show the actual and recognized time instants of the activ-

ities performed by Subject 2 and 3, respectively, along with

cumulative misclassification ratio. The overall cumulative

misclassification ratio is less than 1.5%.

4.2.3 Case 3: Train SVM for one subject and recognize

activities of another

In this case study, we trained the SVM for one subject and

then tried to recognize the activities performed by another
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Fig. 6 Case 1: actual and recognized activities of Subject 1
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Fig. 7 Case 1: actual and recognized activities of Subject 2
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Fig. 8 Case 1: actual and recognized activities of Subject 3
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Fig. 9 Case 2: actual and recognized activities of Subject 1
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subject. We trained the SVM using all the 8 observations

collected from one subject and then tried to recognize the

activities performed from all the 8 observations of another

subject. Figure 12 shows the actual activities and their time

instants as a result of the window-based algorithm run on

‘‘Subject 2’’ data when SVM is trained with data for

‘‘Subject 3.’’ It is evident from the figure that the cumu-

lative misclassification is around 1.6% (as expected,

slightly higher than in the other two cases). Similarly,

Fig. 13 shows the actual activities and recognized activities

and their time instants, which ‘‘Subject 3’’ performed when

the SVM is trained for ‘‘Subject 2.’’ The overall cumulative

misclassification is a bit higher than 1.6% which is more

than for Case 1 and 2. The overall cumulative misclassi-

fication was also found to be around 1.6% for other sce-

narios where ‘‘Subject 1’’ data classified when trained by

‘‘Subject 2,’’ ‘‘Subject 1’’ when trained by ‘‘Subject 3,’’

‘‘Subject 2’’ when trained by ‘‘Subject 1.’’ Hence, we are

showing in this paper the scenarios involving only ‘‘Subject

2’’ and ‘‘Subject 3.’’

Evaluation of the test results involved comparing the

subjects actual activities with the recognized activities. If

the recognized activity actually occurred during the

appropriate time interval, then this outcome was recorded

as a correct recognition; conversely, if a particular activity

produced an unexpected recognition, then this outcome

was considered an incorrect recognition. We show the test

results for all the case studies done on the three subjects in

a ‘‘confusion matrix’’ (see Table 1). It can be noticed that

for Case 1, when SVM was trained separately for each

subject one by one, all the activities were recognized

accurately. However, for Case 2 and 3 there are some

incorrect recognitions. In Case 2, when SVM was trained
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Fig. 10 Case 2: actual and recognized activities of Subject 2
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Fig. 11 Case 2: actual and recognized activities of Subject 3
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Fig. 12 Case 3: actual and recognized activities of Subject 2, SVM

trained for Subject 3
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for all the subjects, there was one misclassified result for

activities—‘‘Walking,’’ ‘‘Smoking,’’ and ‘‘Jogging.’’

‘‘Walking’’ was once incorrectly recognized as ‘‘Jogging’’

and also viceversa. This may have happened because of the

change in pace while walking or jogging by the subjects.

Similarly ‘‘Smoking’’ was incorrectly recognized as

‘‘Standing,’’ maybe because there was a long pause

between the puffs the subject took while smoking. In Case

3, when SVM is trained for one subject and the activities of

another subject were used for recognition, there are some

incorrect recognitions just like for Case 2. The overall

accuracy of the system in recognizing the activities out of a

total of 288 tests was found to be 97.2% and the lowest

accuracy among all the case studies was found to be 91.6%.

A presentation showing the video of the activities per-

formed by one subject and the activities recognized by the

system can be found in [1].

4.2.4 Classification of similar activities

In this case study, we classify a new set of activities that

are all similar. The activities chosen were ‘‘brushing

teeth,’’ ‘‘writing,’’ ‘‘eating with a fork,’’ ‘‘typing,’’

‘‘smoking,’’ and ‘‘drinking.’’ These activities could all be

described as the hand moving toward the face and back for

a period of time. This was done to verify that the proposed

algorithm could differentiate between activities that are

similar but have subtle differences. We trained the SVM

with two datasets from one subject and tested using three

other datasets from the same subject. The subject was
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Fig. 13 Case 3: actual and recognized activities of Subject 3, SVM

trained for Subject 2

Table 1 Confusion matrix

Cases Actual No. tests Activity recognized No. incorrect Accuracy (%)

Walking Standing Writing Smoking Jacks Jogging

Case 1 Walking 12 12 0 0 0 0 0 0 100

Standing 12 0 12 0 0 0 0 0 100

Writing 12 0 0 12 0 0 0 0 100

Smoking 12 0 0 0 12 0 0 0 100

Jacks 12 0 0 0 0 12 0 0 100

Jogging 12 0 0 0 0 0 12 0 100

Case 2 Walking 12 11 0 0 0 0 1 1 91.6

Standing 12 0 12 0 0 0 0 0 100

Writing 12 0 0 12 0 0 0 0 100

Smoking 12 0 1 0 11 0 0 1 91.6

Jacks 12 0 0 0 0 12 0 0 100

Jogging 12 1 0 0 0 0 11 1 91.6

Case 3 Walking 24 22 0 0 0 0 2 2 91.6

Standing 24 0 24 0 0 0 0 0 100

Writing 24 0 0 24 0 0 0 0 100

Smoking 24 0 2 0 22 0 0 2 91.6

Jacks 24 0 0 0 0 24 0 0 100

Jogging 24 1 0 0 0 0 23 1 95.8

Total 288 8 97.2
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asked to perform the activities chosen in a realistic order,

such as a morning routine. The subject smokes, then bru-

shes his teeth. Then, the subject eats, then drinks, and

finally writes and types. This series is shown in Fig. 14. In

Fig. 15, the activities are ordered arbitrarily to verify that

the algorithm is not affected by the order in which the

activities are performed. In both cases we observe that the

cumulative misclassification is extremely low ([2% ).

4.3 Movement recognition

The second part of our approach involves recognizing

movements in an activity. First, we present a case study on

the best feature set for recognizing movements as well as

other parameters such as the number of small classification

windows considered and the number of shifts of a small

classification window within the main classification win-

dow. Finally, using the best feature set and optimal values

of the window-based algorithm, we discuss the perfor-

mance of the algorithm in recognizing movements. To

recognize each movement type within an activity, the SVM

needs to be trained for each movement type. We consider

that a movement in an activity is misclassified if either the

movement type recognized is wrong or if the movement

type recognized is correct but the recognized interval is less

than 20% of the actual interval of the movement, which we

call as jitter. As mentioned before, we used cumulative

misclassification ratio to evaluate the performance of the

algorithm. In addition, for movement recognition, which is

much more complex than activity recognition due to the

shorter time scales, we also used another index, moving

average misclassification ratio, which we define as the

ratio of misclassification of movements over a moving time

window. For calculating this ratio, we considered a time

window having an interval size of 10% of the activity time

and shifted it over the activity.

For showing the performance of the algorithm, we take

the case of recognizing movements within a ‘‘Smoking’’

activity as movements are not overlapping in time, which

makes them separable. For proof-of-concept purpose, we

assumed that a smoking activity comprises of a set of

movements such as the ‘‘arm moving up’’ for smoking

followed by the ‘‘arm moving down’’ after taking the puff,

which are repeated until a cigarette gets over. To recognize

the movements within one specific activity, we need to

train the SVM separately for each movement type within

that activity. Hence, we trained the SVM with the two

movement types in the smoking activity. We took a set of 8

observations of smoking activity for training and another

set of 8 for recognizing. We applied the window-based

algorithm tuned for movement recognition in which we set

around 3–4 min the expected time for a cigarette to be

completely smoked by a subject. The subjects in the

experiments are not real smokers but they are imitating the
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Fig. 14 Actual and recognized (similar) activities, performed by

Subject 1 in realistic order, SVM trained for Subject 1
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Fig. 15 Actual and recognized (similar) activities, performed by

Subject 1 in random order, SVM trained for Subject 1

Pers Ubiquit Comput

123



smoking movements and so the movements could be more

similar than those of real smokers.

4.3.1 Best feature set

To identify the best feature set for recognizing movements

within a specific activity, we considered in total six fea-

tures. The best feature set for recognizing movements

depends on the activity type. In F ; each feature is repre-

sented by a bit and features are considered in the order—

mean, maximum, standard deviation, peak-peak, RMS, and

then correlation. If a binary element in F is 0, it means that

it is excluded, otherwise it is included. Hence, if F ¼
½000110�; then the features considered are peak-peak and

RMS of linear acceleration and angular rate values. For six

features we have a total of 63 combinations for F : We took

the values of N, d, and D as 8, 3, and 2, respectively, for

each combination of F : In order to find the optimal F ; we

placed the main classification window at position of

occurrence of each of the movements in the training set and

classified each of those movements. The optimal F would

be the one that gives the least cumulative misclassification.

Figure 16 shows the cumulative misclassification ratio for

various F values from which we infer the optimal value of

F is [000111]. Hence, the best feature set for recognizing

movements in a smoking activity includes RMS, Peak-

Peak, and Correlation of linear acceleration and angular

rate values.

4.3.2 Optimal parameters

The performance of the classification algorithm depends on

the N sub-intervals considered within a window to extract

features. It also depends on the number of small classifi-

cation windows H considered within the main classification

window, which depends on d, and on the number of shifts

of small classification windows K within the main classi-

fication window, which depends on D. To find the optimal

N, we considered 16 different values with d ¼ 3; D ¼ 2;

and F ¼ ½000111�: Figure 17 shows that if N is too low,

the cumulative misclassification is high; on the other hand,

if N is too high, this would correspond to taking raw

acceleration values of the movement, which produces too

much data to process in quasi real time. In our experiments,

it can be in observed that the optimal value for N is around

8. Similarly, it is also essential to find the optimal values of

d and D. Figure 18 shows cumulative misclassification

ratio versus d for various D. The optimal values of d and D
are 3 and 2, respectively, as the cumulative misclassifi-

cation is the lowest for these values.

4.3.3 Movement recognition performance

Here, we show the performance of the algorithm in rec-

ognizing movements within a smoking activity. For rec-

ognizing the starting and finishing instants of the

movements, we took for F ¼ ½000111�; N ¼ 4; d ¼ 3; and

D ¼ 2; which were identified as optimal values. Figure 19

show the actual and classified positions of both the

movements involved in a smoking activity where ‘‘Move-

ment 1’’ refers to ‘‘arm moving up’’ for taking puff while

‘‘Movement 2’’ refers to ‘‘arm moving down’’ after taking
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Fig. 16 Cumulative misclassification versus F
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Fig. 17 Cumulative misclassification versus N @ d ¼ 3;D ¼ 2
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Fig. 18 Cumulative misclassification versus d for variable D
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the puff. In Fig. 19, ‘‘Actual’’ refers to the actual position

of the movements in the activity, whereas ‘‘Classified’’

refers to the time instants recognized by the algorithm.

Within an activity, we represent a movement logically by a

line of length equal to the time interval for which the

movement occurs and different movement types are shown

at different height within an activity. Figure 19 shows both

the cumulative misclassification ratio and moving average

misclassification ratio.

Figure 20 shows the recognized movements within

another set of the smoking activity. Overall, the results

show that cumulative misclassification is around 20%.

Considering the fact that we did not use any a priori

knowledge on the order of occurrence of the movements in

the activity the misclassification rate is acceptable; fur-

thermore, we considered the case of jitter in our mis-

classification calculation even if the movement is correctly

classified. For example, in smoking activity, ‘‘Movement

2’’ usually follows ‘‘Movement 1’’ and so the order of

occurrence of movements involved can be used to improve

movement recognition (i.e., by filtering out unfeasible

movement combination/order).

Misclassification for movement recognition, which is

almost 20% is much greater than for the activity recogni-

tion, which is around 5–9% because of the following rea-

sons: (1) in movement recognition we are dealing with

shorter time scales and (2) multiple movements within an

activity give way to multiple transitions, which are not

negligible compared to the time scales of the individual

movements. Last but not least, note that although we

considered only six different activities and movements

within ‘‘smoking activity,’’ our approach can be general-

ized and applied for any number of activity or movement

types separable in time (i.e., non overlapping).

5 Conclusion and future work

We proposed a novel learning-based algorithm that can be

tuned to recognize on the fly either various activities or

movements in a specific activity along with identifying their

starting and finishing instants. We also identified the best set

of features and optimal parameters values of the algorithm

for improving the accuracy of fine motor movement rec-

ognition with a minimal sample of subjects and repetitions

of the activities or movements. The results showed the

accuracy of the algorithm to be around 91 and 80% for

recognition of activity and movement, respectively.

As future work, we will further optimize the algorithm

for movement recognition and train the system for various

other daily-life activities. Further, we will use feedback

from the movement recognition phase to the activity rec-

ognition phase to further improve the accuracy. In addition,

we hope to move the approach into real-world trials for the

classification of smoking and drinking behavior.
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