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A data-centric joint adaptive sampling and sleep scheduling solution, SILENCE, for autonomic sensor-
based systems that monitor and reconstruct physical or environmental phenomena is proposed. Adaptive
sampling and sleep scheduling can help realize the much needed resource efficiency by minimizing the
communication and processing overhead in densely deployed autonomic sensor-based systems. The proposed
solution exploits the spatiotemporal correlation in sensed data and eliminates redundancy in transmitted
data through selective representation without compromising on accuracy of reconstruction of the monitored
phenomenon at a remote monitor node. Differently from existing adaptive sampling solutions, SILENCE
employs temporal causality analysis to not only track the variation in the underlying phenomenon but also
its cause and direction of propagation in the field. The causality analysis and the same correlations are
then leveraged for adaptive sleep scheduling aimed at saving energy in wireless sensor networks (WSNs).
SILENCE outperforms traditional adaptive sampling solutions as well as the recently proposed compressive
sampling techniques. Real experiments were performed on a WSN testbed monitoring temperature and
humidity distribution in a rack of servers, and the simulations were performed on TOSSIM, the TinyOS
simulator.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols;
C.4 [Performance of Systems]: Measurement Techniques

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Sensor networks, adaptive sampling, spatial and temporal correlation,
autonomic systems, cyber-physical systems

ACM Reference Format:
Eun Kyung Lee, Hariharasudhan Viswanathan, and Dario Pompili. 2015. Distributed data-centric adaptive
sampling for cyber-physical systems. ACM Trans. Autonom. Adapt. Syst. 9, 4, Article 21 (January 2015), 27
pages.
DOI: http://dx.doi.org/10.1145/2644820

1. INTRODUCTION

Cyber-physical systems (CPSs) are distributed, autonomic sensor and actor systems
[Melodia et al. 2006] that feature a tight combination of, and coordination between, the
system’s computational and physical elements to enable timely reaction to sensor in-
formation with an effective action. For instance, CPSs can be employed for monitoring
heat and air circulation inside a datacenter to enable energy-efficient thermal manage-
ment decisions such as workload distribution and cooling system optimization. Such
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distributed sensor-based systems are, in general, composed of heterogeneous sensor
nodes that differ with respect to (1) the type of data that they can sense (e.g., tem-
perature, humidity, vibration, airflow, images), (2) the source of energy for operation,
and (3) the mode of data transmission making them constrained in terms of energy
or communication cost or both. In CPSs, as derived metrics from data are of greater
interest than the raw sensed data itself, the self-managing autonomic sensing systems
deployed for estimating a physical or environmental phenomenon primarily address
three major issues through self-configuration, self-healing, and self-optimization. They
are (1) sampling rate in space, (2) sampling rate in time, and (3) data reporting rate.

The phenomenon of interest is generally characterized by multiple manifestations.
For example, temperature, humidity, and airflow rates (manifestations) are crucial for
understanding thermal hotspots (the phenomenon) inside datacenters. Hence, accurate
estimation of a phenomenon requires simultaneous monitoring of its multiple manifes-
tations, which exhibit their own spatial and temporal variation characteristics. Such
nodes, equipped with multiple sensors, are generally deployed in a dense fashion to en-
sure sensing and communication coverage because of their small sensing (or scope) and
transmission ranges. Because of the high density of nodes, there is generally a high de-
gree of correlation among observations of spatially proximal nodes (spatial correlation).
In addition, the degree of correlation between consecutive measurements collected at a
node may vary according to the temporal variation characteristics of the manifestation
(temporal correlation). Therefore, resource-efficient estimation of the phenomenon can
be performed by exploiting the spatial and temporal correlation characteristics of its
manifestations [Vuran et al. 2004; Willett et al. 2004].

In this article, we present distributed adaptive sampling for sensor-based autonomic
systems (SILENCE) for resource-efficient estimation of a phenomenon. SILENCE com-
bines data-centric adaptive sampling with an adaptive sleep scheduling algorithm in
CPSs composed of a network of wireless sensors. The solution exploits the spatial and
temporal correlation in the manifestations to eliminate redundancy and to reduce the
cost of processing and communicating large volumes of sensed data to a base station
(or sink) for postprocessing. Additionally, SILENCE employs temporal causality anal-
ysis for timely reconfiguration of the sensor network in response to variations in the
phenomenon. Specifically, Granger causality metric [Geweke 1982] is computed and
leveraged to not only track the variation in the phenomenon being monitored but also
to analyze the cause and direction of propagation of the variation itself. To the best of
our knowledge, this is the first work on adaptive sampling to exploit temporal causal-
ity analysis for tracking the variation in the phenomenon and for timely reconfiguring
the CPS. Another salient feature of SILENCE is that it is a generic solution in the
sense that a variety of criteria can be used for REP selection, such as similarity and
correlation, Hellinger distance (distance between probability distributions), histogram
distance, and vector norms.

SILENCE enables each node to decide its state (or role) and sleeping schedule in-
dependently based on correlation and similarity of its own sampled data with that of
the neighboring nodes’ data obtained through local control messaging. This aggregated
data helps a node determine whether to play the role of a representative (REP) and,
consequently, to actively report data to the sink on behalf of a group of nodes, or to be
an associate (ASSOC) to a REP and sleep. Putting nodes to sleep ensures that energy
is not spent on packet receptions and sensing. This is advantageous, as it saves re-
sources (energy and bandwidth). Two nodes are said to be sensing similar values if the
difference between the means of magnitude of the manifestation k observed at the two
nodes is less than a user-specified threshold ek

th. Measured values of manifestation k at
two nodes are said to be correlated if the correlation coefficient calculated using recent
samples of data from those nodes is greater than a user-specified threshold (γ k

th). The
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sleep duration is calculated based on the degree of temporal correlation. The REPs also
exploit the temporal correlation characteristics of their sensed data to adapt the rate of
control message broadcasts and data transmissions to the sink. Furthermore, ASSOCs
wake up adaptively and identify or track any variation in the spatial distribution of
the manifestation over time and change their state accordingly to enable accurate re-
construction at the sink. The accuracy measure verifies whether the solution follows
the variation in the manifestations while still satisfying user-specified thresholds.

2. OUR CONTRIBUTIONS: IN THE CONTEXT OF CPS FOR DATACENTER MANAGEMENT

To put the applicability of our work into context, consider the following scenario. The
growing popularity of cloud computing has led to an increase in the size and number of
datacenters. The operating costs are becoming extremely high with a significant portion
of it being costs associated with cooling. Meanwhile, there is an increasing awareness
and emphasis on green-computing practices that encourage energy-efficient design,
operation, and maintenance of computing infrastructure. To balance these conflicting
demands, we envision the use of an intelligent, noninvasive, easily deployable, wire-
less network of heterogeneous sensors feeding vital information to help in the design
of environment-aware and energy-efficient solutions for datacenters. For instance, con-
sider instrumenting a large high performance computing (HPC) datacenter consisting
of 1,000 racks and 50 blade servers in each rack with temperature and humidity sensors
on each server (50,000 in total). SILENCE, when running on such a sensing infrastruc-
ture, will exploit the spatial and temporal correlation in the phenomenon to eliminate
redundancy and to reduce the cost of processing and communicating potentially large
volumes of data (of the order of gigabits) to a monitor node.

Another recently proposed and widely used adaptive sampling solution for accurate
reconstruction of sparse signals from a few random samples is compressive sensing
(CS) [Donoho 2006]. The amount of samples that has to be transmitted and stored
in CS is smaller than what is deemed necessary by the Nyquist-Shannon criterion
for accurate signal reconstruction. However, accurate reconstruction in CS requires
incoherent sampling of sparse signals, which have only a few nonzero components
with respect to some basis. Incoherence is jointly determined by the randomness of
the sampling strategy and the sparsity of the sampled data (in the sparse basis),
which usually exploits the spatial correlation of the data in the field. The knowledge of
spatiotemporal characteristics in the data, however, is not incorporated in the sampling
strategy. In contrast, SILENCE is data centric and exploits the spatial as well as
temporal correlation in the data to elect the REPs.

We evaluated our scheme through real experiments on a wireless sensor network
(WSN) testbed of TelosB sensor motes monitoring temperature distribution in a rack
of servers and through extensive simulations on TOSSIM, the TinyOS simulator.
Figure 1 shows our real experiment setup of 26 TelosB motes densely deployed on 13
servers/blades in a server rack. We focus on monitoring only one server rack in the
machine room at the NSF Center for Autonomic Computing at Rutgers University.
We studied the trade-off between gains in terms of energy cost savings (for sensing
and communication) and loss in accuracy. Using our algorithms, we observed that
we can achieve up to approximately 50% reduction in the number of nodes (REPs)
transmitting data to the sink (remote processing center) while also significantly
saving on energy and communication costs (approximately 30%) in our experimental
and simulation scenarios. We compare our distributed heuristic approach with
the benchmark provided by the centralized optimal (but impractical) solution, a
traditional non–data-centric randomized REP selection procedure for WSNs and
different variations of the compressive sampling technique (with different sparse
basis). We also demonstrate the effectiveness of our solution when monitoring multiple
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Fig. 1. A heterogeneous wireless sensor network testbed measuring multiple manifestations such as tem-
perature, humidity, and airflow in a server room at the Center for Cloud and Autonomic Computing, Rutgers
University.

manifestations and in high-density deployment scenarios. The contributions in this
article build on a preliminary version of SILENCE developed in 2011 [Lee et al. 2011].
The following are the contributions of the preliminary version:

—We propose a decentralized data-centric adaptive sampling scheme (SILENCE) that
elects appropriate representatives for selective data reporting to the sink while main-
taining user-specified reconstruction accuracy.

—We propose to combine adaptive sampling with a data- and communication-centric
sleep scheduling to bridge the gap between data-centric distributed sensing and
connectivity issues in a sparsely connected WSN.

—We allow the user to steer the performance of the sensor-based system (in terms of
the number of REPs reporting to the sink and the accuracy in reconstruction of the
manifestations) through user-defined thresholds.

In addition to the preliminary version, the following are the contributions of this
article:

—We have formulated and explained in detail the centralized optimization-based ap-
proach to the problem of selecting representatives. The centralized approach, al-
though impractical, serves as a benchmark to the performance of our proposed dis-
tributed algorithm.

—We have described and discussed another recently proposed and widely used adaptive
sampling solution, CS, against which we have evaluated our solution.

—We have discussed in detail and shown through additional simulations the impact of
different user-defined thresholds on the reconstruction accuracy of our approach.

—We have introduced the use of temporal causality analysis across network nodes
to not only track the variation in the phenomenon in a timely manner but also to
identify its cause and direction of propagation in the field of interest.

The remainder of the article is organized as follows. Section 3 highlights the contri-
bution of this work and compares it with existing approaches. Section 4 discusses the
optimal centralized approach and provides insights for the design of our distributed
solution. Section 5 describes our solution for autonomic adaptive sampling. Section 6
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presents the experiment and simulation setup, and discusses the performance
evaluation of our proposed solution. Finally, we conclude our article in Section 7.

3. RELATED WORK

Recent works on energy-efficient thermal management of datacenters assume that the
information required to make thermal-aware decisions (such as cooling system opti-
mization and/or workload redistribution) is readily available without considering the
communication and computation overhead involved in the collection and processing
of huge amounts of raw sensor measurements [Moore et al. 2006; Abbasi et al. 2010;
Banerjee et al. 2010]. In reality, thermal- or cooling-aware datacenter management
schemes require information about (1) inlet and outlet fan temperature for each ma-
chine (blade or chassis), (2) CPU or core utilization for each machine, (3) computer room
air conditioner (CRAC) air inlet and outlet temperatures, (4) the fan speeds (CRAC and
computing unit exhaust fans), (5) power specifications of each server type, and (6) work-
load information (duration, start time, arrival frequency, etc.). The following are the
summary of features of our solution, which differs from other solutions:

—Our solution reduces the amount of raw data required for extracting useful informa-
tion in challenging real-world applications such as thermal-aware datacenter man-
agement [Lee et al. 2012b] without penalizing the effectiveness of the management
decisions due to inaccurate reconstruction of the phenomenon.

—Our solution is the first work to jointly perform adaptive sampling for data collection
and sleep scheduling for energy savings in WSNs.

—Our solution ensures data quality by employing similarity along with correlation
for exploiting spatial and temporal correlation in sensor data. Previous solutions for
energy saving using cluster heads/local base stations focused on how to reduce the
quantity of the data transmitted to the sink but did not take the quality of the data
into account.

—Our solution is integrated with a mechanism to ensure end-to-end connectivity (i.e.,
any REPs is guaranteed to be able to reach the sink via multihopping), which is often
overlooked by the literature dealing with clustering in WSNs.

Our approach is different from traditional clustering algorithms (e.g., Younis and
Fahmy [2004], Mhatre and Rosenberg [2004], and Bandyopadhyay and Coyle [2003,
2004]), which reduce global communication to prolong the lifetime of the network,
or self-organization mechanisms (e.g., Sohrabi et al. [2000], Stankovic et al. [2003],
Bhardwaj and Chandrakasan [2002], and Ogren et al. [2004]), which use dynamic
role assignment to extend the lifetime of the network while also reducing commu-
nication cost. Such solutions, in fact, have largely overlooked integration between
self-configuration and data interpretation. In such schemes, the group leaders (cluster
heads/local base stations) are selected not based on the quality of the data that the user
needs but instead are based on constraints such as lifetime of the network, energy, and
wireless link quality.

SILENCE differs from solutions that perform in-network processing of data to elim-
inate redundancy such as compression [Kusuma et al. 2001; Pradhan et al. 2002], data
aggregation [Li et al. 2009; Krishnamachari et al. 2002], source coding [Cui et al. 2007;
Pradhan and Ramchandran 2000], and routing and data compression [Scaglione and
Servetto 2002; Scaglione 2003], as they require constant local communication inside a
cluster/group of nodes. Instead, our solution puts the nodes to sleep to reduce local com-
munication and to save energy while ensuring user-specified levels of accuracy in data
reconstruction. This approach is different from previous sleep scheduling algorithms
[Xu et al. 2008; Chachra and Marefat 2006] because it adjusts sleep duration based
on the data correlation, whereas others are scheduled for increasing network lifetime.
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SILENCE is also fundamentally different from the recently proposed CS technique,
which can reconstruct sparse signals (on some basis) accurately using fewer random
samples than what is prescribed by the Nyquist-Shannon criterion. CS has already
been employed for monitoring networks [Haupt et al. 2010; Quer et al. 2009], hard-
ware performance [Huang et al. 2012], ambient temperature, rainfall, and pollution
levels [Quer et al. 2009]. CS does not incorporate the knowledge of spatial and temporal
characteristics in the data (which is exploited in the selection of a sparse basis) into
its sampling strategy. In contrast, SILENCE exploits the spatial as well as temporal
correlation in the data (using similarity and correlation) to elect the REPs.

In SILENCE, connectivity issues after node deployment are addressed and solved
by using a mechanism employing AWAKE packets to notify that an ASSOC node is no
longer sleeping, but awake and ready (referred to as AWAKE − ASSOC) for relaying
the packets. This is in contrast to existing solutions like clustered aggregation [Yoon
and Shahabi 2007], in which all nonrepresentative nodes stay awake all the time to
aid in multihop routing. In a sensor network employing SILENCE, only the minimum
number of nodes required for maintaining connectivity will be awake at any point
in time, thus saving energy and increasing the lifetime of the network. The scope of
the connectivity in this article is to address the issues only caused by introducing our
adaptive sleeping algorithm. We do not consider the case of ensuring global network
connectivity (i.e., determining the minimum density of “awake” relay nodes), because
it requires predeployment optimization, which in turn relies on global topology infor-
mation apart from deviating from the focus of our article. There are many algorithms
that deal specifically with the aforementioned problem in WSNs (e.g., connectivity
map [Ha et al. 2006] and initial connectivity graph [Keshavarzian et al. 2006]), and
our algorithm runs on the top of one of those.

Researchers have explored the use of spatial and temporal correlation in the mea-
sured data to determine cluster heads and to compress or duplicate data [Aggarwal
et al. 2011; Zoghi and Kahaei 2009; Chen et al. 2010; Jiang et al. 2011; Liu et al. 2007].
However, SILENCE differs from these solutions in the following manner. First, SI-
LENCE is generic in the sense that a variety of criteria can be used for REP selection.
In this work, we have used similarity and correlation, whereas other metrics include
Hellinger distance (distance between probability distributions), histogram distance,
any vector norm, and so forth. Second, SILENCE also leverages temporal causality
information during the reclustering phase for timely reconfiguration of the sensor
network in response to variations in the phenomenon. This information is obtained
from the Granger-causality metric, which is computed pairwise across sensor network
nodes. Such analysis enables us to not only track the variation in the phenomenon
being monitored but also to analyze the cause and direction of propagation of the vari-
ation itself. This way, SILENCE closes the gap between the cyber and physical worlds
by incorporating information from temporal causality analysis into the REP selection
procedure.

An interesting feature of SILENCE is the use of similarity along with temporal
correlation for determining the spatial correlation in sensor data. We achieve resource
efficiency (reduction of costs for processing and global communication of sensor data)
by allowing only a subset of nodes (REPs) to send meaningful data to the sink while
the rest of the nodes (ASSOCs) sleep. This representation of a group of ASSOCs by a
single REP is possible only due to the use of similarity along with correlation. If only
correlation were considered, a REP would end up representing nodes that experience
only a correlated trend in variation of the manifestation.

Interestingly, SILENCE also allows the user to steer the performance of the sensor-
based system (in terms of the number of REPs reporting to the sink and the accu-
racy in reconstruction of the manifestations) through specification of two important
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thresholds for similarity (ek
th) and correlation (γ k

th) for each manifestation k associated
with a phenomenon. The user or administrator of the networked system can decide
the granularity at which he or she needs data from the sensing system. For instance,
in datacenters, sensed temperature and humidity values are crucial, as they convey
the operating environment of servers that may be handling sensitive and crucial data.
Their values directly reflect on the performance of the machines, and hence they should
be monitored at a very fine granularity. Another scenario could be a networked sens-
ing system monitoring a greenhouse botanic garden where larger thresholds could be
set, as it may be sufficient to obtain measurements at a coarse granularity. SILENCE
is easily implementable and scalable to large and dynamic sensor-based systems. The
highly decentralized nature of our solution is demonstrated using a scenario in which a
localized change in the spatial distribution of the manifestation is identified and dealt
with locally without involving nodes that are not spatially proximal and unconcerned
with that change.

4. CENTRALIZED APPROACH

In this section, we discuss the REP selection problem of SILENCE for a deployment
of N nodes in a 2D field as a centralized optimization problem. This centralized opti-
mization approach is not intended to achieve redundancy elimination using selective
representation under user-specified reconstruction accuracy constraints in real-time.
However, it is intended to show the complexity of the problem and motivate the need
for a localized distributed solution and to serve as a benchmark for the performance of
our proposed distributed solution (SILENCE) for small problem sizes. Even though the
centralized approach is impractical, complicated, and nonscalable, it gives us insight
to make key design decisions for our localized distributed solutions.

The maximum error ek
max in reconstruction observed over all N nodes in the field

should be minimized to find the optimal set of ASSOC and REP nodes. Here, the error
in reconstruction is defined as the absolute difference between the actual value mea-
sured by a node on the field and the one that is reconstructed at the sink based on
the information from its REP. The optimization problem aims at finding the optimal
set of REPs that minimize this maximum error in reconstruction to a value below
the threshold specified by the user. When the number of nodes N and the manifesta-
tion k are given, the following problem finds the optimal number and set of M REPs
reporting to the sink. This optimal set is chosen such that the absolute difference be-
tween maximum error ek

max in reconstruction and the error threshold ek
th is minimized.

The notations used in the optimization problem are listed next, where matrices are
represented in bold and vectors are underlined:

—R = {rn}N×1, where rn ∈ {1, 0}, is an N × 1 vector that indicates whether a node is
REP or not, and rn = 1 if it is a REP node and 0 otherwise.

—A = {anm}N×N, where anm ∈ {1, 0}, is an N × N matrix that indicates whether a node
n is associated with REP node m or not, and anm = 1 if node n is associated with REP
node m and 0 otherwise.

—�k = {ψk
ns}N×S is an N × S matrix of samples of manifestation k at each node, ψk

ns
is the sth sample of manifestation k measured at sensor node n, and S is the total
number of samples.

—�k = {ψk
n}N×1 is an N × 1 vector of mean of sampled values (S samples) at each node

n for a manifestation k.
—Ek = {ek

nm}N×N, where ek
nm = |ψk

n−ψ
k
m| is the difference between the means of sampled

values (S samples) of manifestation k at nodes n and m.
—Ck = {γ k

nm}N×N, where γ k
nm is the correlation between the sampled values (S samples)

of manifestation k at nodes n and m.
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—D = {dnm}N×N, where dnm ∈ {1, 0}, is an N × N matrix that denotes whether nodes n
and m are within the radio transmission range of each other or not.

Given (offline): N, S, ek
th, γ

k
th,�

k, D

Computed (online): Ek, Ck

Find: R∗
, A∗

Minimize: |ek
max − ek

th|
ek

max = ‖ek‖∞,

ek = {ek
n}N×1 = |A · �k − �k|

Subject to:
amm = rm, ∀m = 1 . . . N; (1)

N∑
m=1

anm · rm = 1, ∀n = 1 . . . N; (2)

dnm ≥ anm, ∀n, m = 1 . . . N. (3)

The objective function has been designed to ensure that the problem does not choose
all nodes in the field to be REPs to minimize the maximum reconstruction error ek

max.
We use the user-specified reconstruction error threshold to limit the number of REPs in
the field. Constraint (1) forces a REP to be associated only with itself and also ensures
that only ASSOCs are associated to REPs and not vice versa, constraint (2) forces every
node that is not a REP to be associated with one and only one REP, and constraint (3)
ensures that an ASSOC and its REP are within each other’s radio transmission range.

Our objective is to find the minimum number of REPs, M, and the best possible set
of those from the total number of nodes, N, so that the error threshold set by the user
is satisfied. The time complexity of the centralized problem grows exponentially with
the number of REPs M and the number of nodes N. In addition, given a solution (the
number M and the list of REPs R), its optimality cannot be verified in polynomial time.
Therefore, the centralized optimization problem is NP-hard. The centralized approach
is also impractical for real-world deployment, as it assumes complete knowledge of the
entire network state and sensed data at a centralized location. However, it provides
us with insights for devising distributed mechanisms to select the best set of REP
nodes while minimizing the error in reconstruction of the phenomenon. To achieve
the dual objective of energy efficiency and minimization of reconstruction error, in our
distributed solution we follow a divide-and-conquer approach to split the problem of
finding the best set of REPs into a number of localized optimization problems. In this
strategy, measured values are locally exchanged between nodes, and REPs are elected
through a distributed election procedure.

We also performed comparisons between the centralized approach and SILENCE on
a 16-node sensor network deployed in a 50 × 50 m2 field. The minimum of maximum
reconstruction error obtained when the centralized problem is solved by varying M
from 1 to 15 is shown in Figure 2. The maximum reconstruction error falls within the
threshold that we set, ek

th = 0.5◦C, only when the number of REPs, M, is at least 11.
From our simulation in TOSSIM for the same deployment, field, and error threshold,
we observed that the number of REPs chosen by SILENCE fluctuates between 11
and 12, which is close to the optimal solution. The difference between the centralized
approach and the distributed approach can be attributed to the nonidealities that are
introduced by the wireless link and to the limited sensing and communication range
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Fig. 2. The minimum of maximum reconstruction error obtained when the centralized problem is solved
by varying M (number of REPs) from 1 to 15. The maximum reconstruction error falls within the threshold
that we set, ek

th = 0.5◦C, only when the number of REPs, M, is at least 11.

of sensor nodes. Detailed comparisons between SILENCE and the centralized solution
with different error thresholds are presented in Section 6.1.

5. PROPOSED SOLUTION

SILENCE enables each node in autonomic sensor-based systems to determine its role
or state dynamically and independently (self-configure) through the exchange of control
messages. The three states (two primary and one auxiliary) in which a node can be
are REP, ASSOC, and AWAKE − ASSOC. Primarily, a node can either be a REP or
an ASSOC; REPs periodically transmit sampled data to the sink along with the list
of their ASSOCs so that the sink can accurately reconstruct the spatial distribution
of the manifestations, whereas the ASSOCs go to sleep to save energy. The other
auxiliary state in which a node can be is a special case of the primary ASSOC state:
an AWAKE − ASSOC is an ASSOC that has woken up to verify if its newly sampled
data is still correlated and similar to that of its REP and to aid in relaying packets
to the sink. It changes its state to become a REP and reports to the sink if there is
a significant variation in the spatial distribution of data over time (self-heal). Thus,
the solution allows only an appropriate (small) subset of nodes to send meaningful
data to the sink and strives to incur only lower-than-acceptable loss of accuracy in the
reconstruction of the phenomenon.

The goal of our solution is to address the problem of redundancy elimination using
selective representation under userspecified reconstruction accuracy constraints in a
distributed and energy-efficient manner. To realize the goal, SILENCE relies on basic
assumptions about the underlying sensor-based system of the broader CPS. First, each
sensor node is aware of its position in the field. This is necessary to spatially recon-
struct the data at the sink. Second, we assume that REPs in the field can communicate
with the sink over multiple hops, if required, through the use of an appropriate routing
communication protocol such as ad hoc on-demand distance vector routing (AODV),
optimized link-state routing (OLSR), and geographical routing. The proposed solution
is not a best effort kind suboptimal distributed solution (such as random REPs selec-
tion). Rather, it is a localized solution that exploits the acquired knowledge about the
spatiotemporal characteristics of the field and whose performance is shown to be close
to that of a centralized optimal solution.

5.1. Similarity and Correlation

The key component of SILENCE—that is, the transition between roles or states of a
node—depends on two important metrics: similarity and correlation. Two nodes n and
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Fig. 3. The three states in which a node on the field can be at any point in time, as well as the events
and messages that trigger state transitions. {Event, T x, Rx} represents the event and control messages that
trigger a state change.

m are said to be sensing similar values if the difference between the means of their
measured values of a manifestation k, ek

n,m, is less than a user-specified threshold, ek
th.

Measured values of manifestation k at nand mare said to be correlated if the correlation
coefficient, γ k

n,m, which is calculated using S samples of data from those nodes, is greater
than a user-specified threshold, γ k

th. The formulas used for determining similarity and
correlation are as follows:

ek
n,m = |ψk

n − ψ
k
m|, (4)

where ψ
k
n and ψ

k
m are the means of S samples of the manifestation k at nodes n and m,

respectively. The correlation coefficient γ k
n,m is given by

γ k
n,m =

∑S
s=1

(
ψk

n[s] − ψ
k
n

) · (
ψk

m[s] − ψ
k
m

)
√∑S

s=1

(
ψk

n[s] − ψ
k
n

)2 ·
√∑S

s=1

(
ψk

m[s] − ψ
k
m

)2
. (5)

If n and m are sensing similar and correlated values, then n is a potential-ASSOC of m
and vice versa. Actual-ASSOCs are finalized after control message exchanges.

5.2. State Transitions

The three states in which a node on the field can be at any point in time, as well
as the events and messages that trigger state transitions, are depicted in Figure 3.
Initially, after deployment, all sensor nodes in the field are in the REP state. Each
REP periodically samples every manifestation k of the phenomenon and transmits
it to the sink and advertises the measured values to its neighbors through HELLO
broadcasts in an independently determined sampling duration. For each node, the
sampling phase starts at TStart and ends at TEnd, which is chosen between T min

End and T max
End

in a uniform random manner. This randomization is purely to avoid packet collisions
due to synchronization among nodes that happen to start sampling at the same time.
The sampling phase (whose duration is TEnd-TStart) is followed by the state decision
phase, whose duration is less than T max

End -TEnd.
HELLO packet from a node contains time series values of the manifestations

(sampled data) observed at that node, additional information about the number of
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neighboring nodes that can be potential-ASSOCs, and the number of neighboring
nodes that are actual-ASSOCs of that REP. In the meantime, a REP sends DATA
packets to the sink periodically and also receives a number of HELLO broadcasts from
its neighboring REPs. The frequency with which both the packets are transmitted
can be adaptively determined from the rate of change of the manifestations over time.
This is evident from the way the time series measurements of each manifestation
are conveyed in the packets as <Value, Duration> pairs: the slower the rate of
change of manifestations at a sensor node, the lower the frequency of transmission
of both types of packets. This component of the solution is called adaptive data
reporting.

ALGORITHM 1: State decision using similarity and correlation.

INIT STATE DECISION:
IS ASSOC = 0, MY REP = 0
ek

th, γ k
th = {Threshold for similarity and correlation}

LIST REPP A = {List of potential REPs}
STATE DECISION:

In LIST REPP A find LIST REPmax
P A

if SIZE (LIST REPmax
P A ) == 1 then

MY REP = LIST REPmax
P A

IS ASSOC = 1
Send JOIN, Receive ACK
Sleep (TSleep)

else
In LIST REPmax

P A find REPmax
ID

MY REP = REPmax
ID

IS ASSOC = 1
Send JOIN, Receive ACK
Sleep (TSleep)

end if

With the samples in the DATA or HELLO packets that a REP receives from its
neighbors, it calculates an updated list of potential-ASSOCs and actual-ASSOCs, and
appends this information in its future HELLO broadcasts. At TEnd, the REP stops sam-
pling and makes a decision whether to stay in the same state or transition to be an
ASSOC to another REP. This decision is entirely based on similarity (ek

th) and correla-
tion (γ k

th) between its own sampled data and the data of neighboring nodes obtained from
received HELLO packets. With the most recently updated list of potential-ASSOCs, a
node decides its future state as shown in Algorithm 1.

Initially, after deployment, all nodes in the field are REPs and are not associated with
any other node (i.e., for all nodes IS ASSOC = 0 and MY REP = 0). A REP switches
to the ASSOC state only if it finds a suitable REP that satisfies both the similarity and
correlation thresholds and has a higher number of potential-ASSOCs than itself. After
a list of potential REPs is available (LIST REPP A) in the sampling phase, each node
chooses the one with the highest number of potential associates (LIST REPmax

P A ) in
the state decision phase. Node IDs are used to break the deadlock—a situation where
two REPs have similar number of potential associates and one has to be chosen for
association—if there is one.

The transition is complete with the exchange of JOIN and ACK packets that contain
sleeping duration TSleep based on the correlation. After the state transition, the new
ASSOC node goes to sleep during TSleep. Conversely, if the REP chooses to continue in
the same state, the whole cycle starting from TStart repeats itself. The system is capable
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Fig. 4. Effect of user-specified thresholds on accuracy of reconstruction of the manifestation (humidity):
ek

th = 3%, ek
th = 5%, and ek

th = 7%. The higher the error threshold, the lower the number of REPs (out of a
total of 400 sensor nodes deployed over a 200m × 200m field monitoring humidity) reporting to the sink.

of avoiding undesired associations between nodes that are within each other’s radio
frequency range and that are accidentally measuring similar values. This ability of the
system can be attributed to the intentionally long sampling phase employed at every
REP (initially, all nodes are REPs) and AWAKE − ASSOC. The long sampling phase
ensures that undesired associations due to transient and erratic behaviors of sensors
do not happen.

5.3. Choice of Thresholds

As mentioned earlier, SILENCE allows the user to increase (by zooming in) and de-
crease (by zooming out) the resolution of sensing by choosing appropriate values for
the similarity (ek

th) and correlation (γ k
th) thresholds for a manifestation k as illus-

trated in Figure 4. The choice of thresholds can be based on some prior knowledge
about the observed manifestations of a physical or environmental phenomenon. For
example, the American Society of Heating, Refrigerating and Air-Conditioning En-
gineers (ASHRAE) published the recommended environmental envelope (in terms
of temperature and relative humidity (RH)) for IT equipment housed in datacen-
ters. The current envelope is given by low-end temperature 18◦C, high-end temper-
ature 27◦C, low-end moisture 5.5◦C dew point (DP), and high-end moisture 60% RH
and 15◦C DP. The purpose of the recommended envelope is to provide guidance to
datacenter operators for maintaining high equipment reliability and achieving high
energy efficiency. Exceeding the recommended operating environment limits for ex-
tended time periods could result in equipment damage, which may lead to an in-
crease in service downtime and, hence, increase in number of service-level agreement
violations.

For example, when the RH exceeds 60% and remains high for extended periods, it
can result in failures given the reduced conductor to conductor spacings common in
many designs today. Datacenter managers can use the measured temperature, RH, and
the psychrometric chart, which conveys the relationship between the two as depicted
in Figure 5, to determine whether the datacenter operating point is within the rec-
ommended range. They can modify the similarity (ek

th) and correlation (γ k
th) thresholds

to zoom in or zoom out depending on the current operating point. Figure 4 demon-
strates the effect of the user-specified threshold on the reconstruction of distribution
of humidity at the remote sink. The higher the error threshold, the lower the number
of REPs (out of a total of 400 nodes) reporting to the sink. However, as the bound on
reconstruction accuracy is increased (due to a higher ek

th, from 3% to 7%), the accuracy
with which the distribution of the manifestation is reconstructed (using Voronoi-based
reconstruction) decreases.
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Fig. 5. Psychrometric chart showing ASHRAE’s recommended environmental envelope (operating condi-
tions) for IT equipment housed in datacenters. The current envelope is given by low-end temperature 18◦C,
high-end temperature 27◦C, low-end moisture 5.5◦C DP, and high-end moisture 60% RH and 15◦C DP.

Fig. 6. The activity of an AWAKE − ASSOC (an ASSOC after its sleep duration). In the sampling phase, an
AWAKE − ASSOC listens to HELLO broadcasts from all neighboring REPs, including its own. At the end
of the sampling phase, it verifies similarity and correlation of its own sampled data and that of its REPs
received recently to decide whether a state change is necessary.

5.4. Sleep Scheduling and Connectivity

In the case of WSNs, ensuring connectivity among the REP nodes and the sink/base
station is as important as saving energy and wireless communication bandwidth. In
SILENCE, the sleep duration TSleep for an ASSOC can be fixed or can be adaptively
adjusted based on the degree of similarity and correlation of the ASSOC and REPs
data—that is, TSleep = φ(e1 . . . eK, γ 1 . . . γ K) · T min

Sleep, where K is the maximum number
of manifestations. To ensure connectivity of all active nodes (REPs) with the sink at
all times, we enforced an upper bound on the sleep duration of all ASSOCs. In other
words, every node (REPs or AWAKE − ASSOCs) will have at least one other active node
within its radio range and in the positive advance set toward the sink. A generic node
belongs to the positive advance set with respect to a sender node if it is closer to the
destination (in this case, the sink) than the sender. The activity of an AWAKE − ASSOC
(an ASSOC after its sleep duration) is shown in Figure 6. In the sampling phase, an
AWAKE − ASSOC listens to HELLO broadcasts from all neighboring REPs, including
its own. It does not transmit any HELLO packets. At the end of the sampling phase, it
verifies similarity and correlation of its own sampled data and that of its REPs received
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recently. If each of the thresholds ek
th and γ k

th for all the manifestations are satisfied,
the node switches back to ASSOC state and sleeps again. If any of the threshold is not
satisfied, the AWAKE − ASSOC switches to REP state after exchanging LEAVE and
ACK packets with its old REP.

Even though REPs are always “ON” for relaying packets from other nodes, re-
liable connectivity from every REP to the sink node cannot be ensured in WSNs.
This is because SILENCE has elected the REPs in a data-centric manner. Hence,
AWAKE − ASSOCs should be utilized to relay opportunistically packets for multi-
hop communication. However, connectivity between AWAKE − ASSOCs cannot al-
ways be ensured, because they may not have information about the next node
to route the packet toward the sink. Hence, AWAKE − ASSOCs use an AWAKE
broadcast packet for announcing availability for multihopping. The best next hop
(ASSOC/REP) with respect to delay or distance could be selected by the REP be-
cause it has the sleeping duration and location information of its ASSOCs ex-
changed during association. The AWAKE packet contains the duration of the avail-
ability (TEnd − TCurrent) and the necessary routing information (e.g., link quality in-
formation in OLSR, location information in geographical routing) to help forward
data packets to the sink. Neighboring AWAKE − ASSOCs and REPs overhear this
packet and choose the next best hop depending on the available information and
the routing strategies (e.g., minimum delay, minimum number of hops, minimum
energy).

5.5. Temporal Granger Causality Analysis

In most applications, reconstruction of the underlying phenomenon at different points
in time (snapshots) is not sufficient. The ultimate goal of any CPS is to understand
the source of spatial and temporal variation in the phenomenon and the direction
in which it propagates. This will allow the CPS to exploit sensor nodes that are
in a better position to efficiently track the phenomenon. We focus on detecting the
magnitude of influence the direction of propagation of variation in a phenomenon
by applying real-time, in situ temporal Granger (G)-causality analysis. Note that G-
causality provides a much more stringent condition on causation than just observ-
ing high correlation with some lag–lead relationship. SILENCE aims at analyzing in
real time the direction of propagation and magnitude of phenomenon changes (i.e.,
temperature, humidity) between nodes in a cluster. Specifically, G-causality is com-
puted and leveraged to not only track the variation in the phenomenon being mon-
itored but also to analyze the cause and direction of propagation of the variation
itself.

Granger-causality: A time series x = {x1, x2, . . . , xt, . . .} is said to G-cause another
time series y if including information about the past of x significantly increases the
prediction accuracy of the current value yt of y in comparison to predicting it based only
on the past values of y alone. G-causality was initially introduced in Geweke [1982],
where the authors implemented it using two vector autoregressive (AR) models; the
first, called restricted model,

xt =
P∑

j=1

aj xt− j + δ1t, yt =
P∑

j=1

aj yt− j + γ1t, (6)

calculates how much two time series, x and y, can be “explained” by their own past
(xt− j and yt− j , with j = 1, 2, . . .), resulting in residual error variances �1 = var(δ1t) and
�1 = var(γ1t) (the model order is represented by P, which specifies how many previous
time points are taken into account, and the length of the time series by T , with P < T ).
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In the second, called unrestricted model,

xt =
P∑

j=1

aj xt− j +
P∑

j=1

bj yt− j + δ2t,

yt =
P∑

j=1

aj yi− j +
P∑

j=1

bj xt− j + γ2t,

(7)

the prediction is based on the time series’ own past and the past of the other time
series. This results in residual error variances �2 = var(δ2t) and �2 = var(γ2t). The
linear influence from x to y, Fx→y, and from y to x, Fy→x, can now be calculated as the
ratio between the variances of the residual error—that is,

Fx→y = ln
var(γ1t)
var(γ2t)

= ln
�1

�2
, Fy→x = ln

var(δ1t)
var(δ2t)

= ln
�1

�2
. (8)

A reduction in error variance when including the past of another time series results in
a larger F-ratio. The difference G-causality—that is, Fx→y − Fy→x—was calculated to
assess the dominant direction of information flow.

Selection of time lag: Selecting the time lag is an important problem in G-causality.
The estimation of AR models requires as a parameter the number of time lags P to
include (i.e., the model order). Too few lags can lead to a poor representation of the data,
whereas too many of them can lead to problems in the model estimation [Seth 2010].
Two criteria have been introduced in the literature, namely the Akaike information
criterion (AIC) [Akaike 1974] and the Bayesian information criterion (BIC) [Schwarz
1978] to estimate the model order. For n variables, we have

AIC(P) = ln(|�2|) + 2Pn2

T
,

BIC(P) = ln(|�2|) + ln(T )Pn2

T
.

(9)

where �2 is the noise covariance matrix of the unrestricted model and | · | indicates
the determinant of a matrix. AIC is calculated for a set of model orders, and the order
that gives the minimum value of AIC is selected as the model order of the AR model to
determine G-causality between two time series.

In SILENCE, we have employed G-causality to elect/change REP within a cluster as
a timely response to change in the underlying phenomenon. We present an example
temporal G-causality analysis on a small cluster of 11 nodes numbered 1 through
11. A closer look at the metric, causality flow, which is represented using a bar graph
Figure 7(a), a network flow diagram Figure 7(b), and in matrix form Figure 7(c), teaches
us the following about the cluster. Any change in the phenomenon is first experienced
by nodes 9 and 10 before any other node in the cluster. This is reflected in a high
causality flow score in the bar diagram as shown in Figure 7(a). The network flow
diagram (Figure 7(b)) and the matrix representation (Figure 7(c)) also indicate that
nodes 9 and 10 cause all other nodes. When nodes with high causality flow scores
are elected as REP, the reconstruction error decreases significantly. Therefore, a good
choice of REP in this cluster would be node 9 or 10.

5.6. Toy Example

We present a toy example to help understand REP selection in SILENCE better.
Figure 8 shows the node ID and number of potential-ASSOCs for every node. Solid
circles represent the nodes that have similar and correlated values in time. Dotted
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Fig. 7. Temporal G-causality analysis on a cluster of 11 nodes with 1 REP and 10 ASSOCs. This analysis
reveals causal sources and sinks. Part (a) shows the causality flow (sign and magnitude), whereas parts (b)
and (c) show the causality information in network form and matrix form, respectively.

Fig. 8. A toy example illustrating the REP selection mechanism. Lowercase letters represent node IDs,
whereas the numbers that follow represent the number of potential-ASSOCs. Nodes with the highest number
of potential-ASSOCs in every one-hop neighborhood are elected REP. Here, c, f , i, j, and k are REPs.

lines between the circles represent whether a communication link exists between the
nodes or not. Once the network is deployed, every node is a REP, which senses and
communicates its data. Based on its own data and on the information from the neigh-
bors, each node computes its potential number of ASSOCs and advertises that it could
be a REP if it has at least one potential associate. Nodes with no potential-ASSOCs due
to absence of communication with others (here, node i) or due to dissimilarity in data
(here, nodes j and k) will continue to be REPs. Nodes c and f will decide to continue
to be REPs, as they know that they have the highest number of potential ASSOCs
based on the information about their neighborhood. Nodes a, b, d, and e will decide to
be ASSOCs of node c and will send a JOIN message to c. Once they receive an ACK
from c, they switch states. Similarly, node h will send a JOIN message to the node g,
which will send a JOIN request to node f .

An important feature to note in this scheme is that JOIN and ACK transactions
happen in a window of time and that an ASSOC does not go to sleep immediately after
an ACK. This allows h to join g, which may have already decided to be an ASSOC to f .
In that case, g accepts the request from h and will also notify both f and h about this
chaining. The length of the aforementioned window is fixed in our solution. However,
the window length can be adapted based on the relationship between the nodes’ sensing
scope and radio range. If the sensing scope is small compared to the radio range, then
the window can be large to allow for chaining to avoid redundancy in data reporting.
However, if the sensing scope is small compared to the radio range, then chaining is
undesirable because it may affect global connectivity between the sparsely distributed
REPs and the sink.
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5.7. Competing Approach: Compressive Sensing

In this section, we explain CS, another recently proposed and widely used adaptive
sampling solution against which we will evaluate SILENCE. CS has gained popularity
as an effective tool for accurate reconstruction of sparse signals from few random
samples. The number of samples used for reconstruction can be well below the number
prescribed by the Nyquist-Shannon sampling theorem for perfect reconstruction of
sampled signals. Measured features of the field (i.e., temperature, humidity) are not
naturally sparse. Hence, reconstruction of the distribution of a feature f using a few of
its random samples b requires knowledge of the following: (1) a linear transformation
� under which the feature f to be estimated becomes sparse (say, as x)—that is,
f = � · x, and (2) a measurement matrix � that describes how the random samples b
have been obtained from the sensors on the field (either as pure random samples or
linear combinations of samples)—that is, b = � ·f. With the knowledge of the basis and
the measurement matrices, an estimate of the sparse signal x (which is the original
signal f under transformation �) can be obtained by using L1 minimization. The L1
minimization problem is given by

Given: �,�, b;
Find: f

Minimize: ‖x‖L1 ;
Subject to: A · x = � · � · x = b = � · f.

The solution to this LP can be used to reconstruct the nonsparse signal f. According
to CS theory, the number of random samples M = |b| required to reconstruct the
signal f with a very low error requires the knowledge of the sparsity K of x, which is f
under some linear transformation �. The sparsity of x depends on the spatiotemporal
correlation of the feature, and as this can change from time to time, optimization of M,
which is determined by 	, in real time is a challenging task. However, if M is fixed, the
transformation � needs to be adapted according to the spatiotemporal variations to
render x highly sparse. Adapting the transformation � in real time is again nontrivial.

In our case, the data from sensors have a degree of correlation in time and simi-
larity in space, especially when they come from closely located sensors. Suppose that
f is a vector that contains temperature measurements of datacenters. Using multiple
realizations of f, corresponding to different times, we need to find the � that makes x
sparse. We adopt several bases that take and do not take into account spatial correla-
tion to emphasize how choosing the right basis is important for CS and compare their
reconstruction error with SILENCE. For the basis that does not take into account the
spatial correlation, we choose discrete cosine transform (DCT) because it is a simple
yet powerful transform with which insignificant high-frequency components can be
discarded to get a sparse representation. For the basis that takes into account spatial
correlation, we choose HorzVer-diff basis [Quer et al. 2009]. To obtain a representation
in the HorzVer-diff basis, the input signal x (a matrix) is subjected to (1) pairwise
subtraction of the elements along the columns of x and then to (2) pairwise subtraction
of the elements of the resulting matrix along its rows.

We compared the performance of different sampling and reconstruction approaches
(with mean reconstruction error as the metric) under the following simulated scenario:
reconstruction of the spatial distribution of temperature in a 100 × 100 m2 field at
a remote sink with data selectively sampled from 400 sensors deployed in a uniform
random manner. Figure 9 shows the mean error of reconstruction achieved by the
following approaches: (1) Random-Voronoi, uniform random sampling and Voronoi-
based reconstruction; (2) CS (DCT), compressive sensing using the DCT basis; (3) CS
(HorzVer-diff), compressive sensing using the HorzVer-diff basis; and (4) SILENCE.
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Fig. 9. Mean error in reconstruction achieved by different sampling and reconstruction approaches:
(1) Random-Voronoi, uniform random sampling and Voronoi-based reconstruction; (2) CS (DCT), compressive
sensing using the DCT basis; (3) CS (HorzVer-diff), compressive sensing using the HorzVer-diff basis; and
(4) SILENCE.

We also tried two other bases for the CS approach: Wavelet and VerHorz-diff bases.
However, we have only presented the performance when DCT and HorzVer-diff bases
are employed, as they represent the worst and best, respectively, among the four bases.
It is intuitive that the mean reconstruction error decreases as the number of samples
(or REPs) increases for all approaches. SILENCE outperforms all other approaches
showing low reconstruction error. We also observed that CS (HorzVer-diff) shows lower
reconstruction error than CS (DCT), implying that the selection of sparse basis is
crucial in using the CS approach.

6. PERFORMANCE EVALUATION

The performance of SILENCE, our adaptive sampling scheme for autonomic sensor-
based systems, was evaluated through real experiments using a WSN composed of
TelosB motes and repeatable simulations on TOSSIM, the TinyOS simulator. We also
compared its performance against the centralized optimal REP selection approach. As
the time complexity of the combinatorial problem is a limiting factor, we could only com-
pare the performance for a small deployment of nodes. We perform real experiments
to demonstrate that SILENCE is easily implementable and realizable in practice. As
large-scale experiments could not be conducted, we use simulations to study the per-
formance of our algorithm in large-scale and high-density deployment scenarios. The
experiment and simulation setup, as well as the results, are detailed in the following
discussion.

6.1. Real Experiments

The temperature sensors on the motes measure the external temperature and are used
to estimate heat generation and distribution [Lee et al. 2012a] during the operation of
the servers on our testbed shown in Figure 1. Two sensor motes are deployed at the
front of each server blade: one right in front of the outlet fan and one farther away
at the other end. Figure 10 visualizes the strong spatial and temporal correlation in
measured temperature data (single snapshot from sensors placed close to the outlet
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Fig. 10. Experiment results. Spatial distribution ((a) and (b)) and temporal distribution ((c) and (d)) of
measured data (temperature) among the 26 sensor nodes deployed on a rack of 13 blade servers. One sensor
is placed right in front of the outlet fan, and the other is placed farther away at the other end.

fans) among the 26 sensor nodes based on the workload distribution. The blades are
numbered 1 to 13 from top to bottom.

In Figure 10(a), it can be seen that when blades 7 through 10 from the top are
operational (marked with solid circles), there is a significant difference in temperature
between the operational and idle server blades. Moreover, due to the spatial proximity
of blades 6 and 11 to the operational ones, they also experience a higher temperature
compared to the other idle ones. Similar spatial correlation can be observed in the
scenarios depicted in Figure 10(b), where the odd-numbered blades are operational. The
depicted spatial correlation was observed at a particular snapshot where the thermal
impact of running blades are high. We observe significant spatial correlation in server
temperature. Figure 10(c) and (d) show the temporal correlation of the measured data
among the 13 sensor nodes (in front of outlet fans of each blade) over time for the
operational scenarios depicted in Figure 10(a) and (b). We run SILENCE on this sensor
network to verify whether it effectively exploits the spatial and temporal correlation in
the observed manifestation (temperature) to elect only an appropriate number of REPs
for reporting data to the sink. We set the error threshold and correlation threshold to
etemp

th = 0.5◦C and γ
temp
th = 0.75, respectively.

Figure 11(a) shows the number of REPs transmitting data to the sink as the manifes-
tation changes over time and the reconstruction accuracy—that is, the number of nodes
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Fig. 11. Experiment results. (a) Number of REPs and percentage of nodes within the error threshold
specified by the user (here, ek

th = 0.5◦C for temperature) over time. Comparison of performance of SILENCE
with centralized optimal REP selection in terms of number of REPs in time (b) and in terms of average
percentage REPs in long-duration experiment (24 hours) (c).

within the error threshold specified by the user. It can be observed that as the thresh-
olds are relaxed, the number of REPs decreases further for the same phenomenon, as
only the minimum number of nodes required for a specified reconstruction accuracy are
selected. The savings in terms of communication cost is evident, as a fewer number of
nodes are reporting data to the sink compared to the base case (when all nodes trans-
mit). To verify whether SILENCE achieves its objective of selecting the appropriate
number of REPs, we compare its result with the outcome of centralized optimal REP
selection for different error thresholds (etemp

th = 0.5◦C and 1.0◦C). Figure 11(b) shows
that the number of REP nodes selected by SILENCE is comparable to the optimal value
for different error thresholds. Figure 11(c) shows the average percentage of REP nodes
in the network in long duration (24 hours). It implies that even in the long-duration
experiment, the performance of SILENCE is close to that of optimal value selection for
different error thresholds.

6.2. Simulations

The size of our testbed was a limiting factor in the study of the performance of SILENCE
under high-density and large-scale deployment scenarios; therefore, we performed ad-
ditional simulations on the TinyOS simulator, TOSSIM. For simulations, it is key that
the right models are used for the phenomenon. The spatiotemporal distribution of man-
ifestations considered in simulations (temperature and humidity) is modeled based on
the characteristics of actual data measured in the testbed. We assume that we have
400 motes measuring temperature and humidity data, which has the same range (min-
imum to maximum) as the real observed testbed data and spatial correlation scaled in
distance for simplification. The temporal correlation was also scaled in time to obtain
three different fields that vary at different rates (slow, moderate, and fast). This scaling
of spatiotemporal correlation was done to show how our solution is tied to the variation
in the manifestations of the observed phenomenon (data-centric nature). For a slowly
varying field, we set the rate of variation of manifestations between two significant
values (differing by at least 5%) to be the same rate as the one observed in actual
measured data. For a moderately varying field, we modified the rate of variation to
5 times the original (or slow field), and for a fast varying field, we made it 10 times the
original. The manifestations’ rate of variation in space and time are uncontrollable in
real experiments, which also serves as a motivation for our simulation study. The study
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Table I. Parameters of the Model Used for Simulations

Deployment Parameters
Terrain dimension 200 × 200 m2

Topology Uniform random
Number of nodes 400

Channel Parameters
Path loss exponent 3.3
Shadowing standard deviation 5.5dB
Reference distance (D0) 1 m
Power decay for D0 –30dB

Radio Parameters
Transmission power –1dBm
White noise standard deviation 4dB
Radio noise floor –105dBm

Hardware variance (for asymmetric links)
Covariance matrix S = [s11s12; s21s22]
s11 (variance of noise floor) 3.7
s12 (covariance between S1 and S2) –3.3
s21 (same as s12) –3.3
s22 (variance of output power) 6.0

of performance on slow-, medium-, and fast-varying fields is intended to convey the idea
that the proposed solution is not limited to a slow-varying band-limited phenomenon.
The deployment, channel, and radio parameters used in our simulations are based on
Zuniga [2010] and are listed in Table I.

The channel model used for simulations is anisotropic and asymmetric, as pointed
out in Zuniga [2010]. Link asymmetry has both dynamic and static components. The
dynamic component is due to thermal noise, which leads to a dynamic variation of a
node’s noise floor readings at runtime. This dynamic variation is usually modeled as
a Gaussian random variable with mean 0 and a standard deviation (we use 4dB). The
static component is caused by hardware variance (i.e., variance in the output power and
baseline noise floor across nodes). Hardware variance is modeled as a multidimensional
Gaussian process, where a covariance matrix captures the variances of the output
power, the noise floor, and their correlation. The elements of the matrix [s11s12; s21s22]
represent the following: s11, the variance around the mean value of baseline noise floor
of the radio; s22, variance of output power; and s12 and s21, covariance between s11 and
s22. The higher the values of s11 and s22, the greater the asymmetry in the link.

The two metrics used to measure the performance of our solution are (1) the energy
cost (energy spent in Joules per second in the sensor-based system) due to sensing and
communication and (2) the accuracy of reconstruction of the manifestations (percentage
of nodes with reconstructed values lying within the error thresholds specified by the
user). The energy cost for communication takes into account the energy spent on both
control (HELLO, JOIN, LEAVE, ACK, and AWAKE packets) and data traffic (DATA
packets). The energy cost is calculated as follows:

E = Eelec + Ecomm; Ecomm = V · I · L
R

, (10)

where Eelec [J] is the energy consumed by the electronic circuit, Ecomm [J] is the energy
consumed for communication, V [V] is the battery voltage, I [A] is the current, L [Byte]
is the packet size, and R [Byte/s] is the radio transmission/reception rate. SILENCE
using adaptive sleep scheduling is compared against SILENCE employing fixed sleep
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scheduling and a generalized LEACH-like solution [Heinzelman et al. 2000] referred
to as LEACH-gen.

Our implementation of LEACH-gen does not employ the localized election mecha-
nism for REPs selection. The nodes randomly decide to be REPs or ASSOCs based on
a probability distribution. We considered two options for modification LEACH for a
fair comparison with SILENCE. Option (1) was to mimic original LEACH in which the
ASSOCs do not go to sleep. In fact, in original LEACH, there is constant intracluster
communication to perform some signal processing on the data, which is then transmit-
ted to the sink by the REP. Comparison of SILENCE with such an approach would be
unfair because even though the reconstruction error for LEACH can be comparable to
SILENCE (if appropriate data processing is done at REPs), the energy consumption
due to permanently awake ASSOCs and network congestion due to high overhead for
constant intracluster communication will be very high for LEACH. Option (2) was to
mimic LEACH only with respect to the REP selection process (based on a probability
distribution) and then put the ASSOCs to sleep. This way, there is no intracluster data
exchange after REP selection and no data processing at the REPs, just as in SILENCE.
Our intention was to maintain the focus only on the REP selection process, the method
for elimination of redundancy in reported data, and their effect on reconstruction of
the phenomenon. Hence, we chose option (2).

For slow-, moderate-, and fast-varying fields, Figure 12 shows the number of REPs
transmitting sensed data of different manifestations (temperature and humidity val-
ues) to the sink at different points in time and the corresponding percentage of nodes
with value estimates (reconstruction) within the error thresholds for the two manifes-
tations specified by the user. Even with a stringent target reconstruction accuracy of
etemp

th = 0.5◦C and ehum
th = 3%, SILENCE achieves up to 50%, 40%, and 25% reduction in

the number of nodes transmitting data to the sink (REPs) for slow, moderate, and fast
variation rates for the field as shown in parts (a), (b), and (c) of Figure 12, respectively.
The percentage of nodes for which the reconstruction accuracy is satisfied is shown as
well. The reconstruction error fluctuates and the threshold is violated for only up to
∼10% of the nodes in the fast-varying scenario, thus providing an insight into the limit
on our solution’s performance. The transient and steady state of the networked system
when employing SILENCE can be clearly identified in the graphs. As the average of
the error alone does not provide the complete picture, we have also shown the per-
centage of nodes that are within the error threshold (specified by the user) throughout
the duration of the experiment/simulation. Figure 12(c) clearly shows that even for a
fast-varying field, which is 10 times faster than the slow-varying field, the number of
nodes within the threshold is not lower than 90% in the worst case. Hence, we infer
that SILENCE allows for timely reaction to fast changes in the field.

Figure 13 shows the performance of SILENCE for the three different scenarios men-
tioned earlier. Figure 13(a) shows the energy cost (network energy expenditure in
Joules per second) incurred by SILENCE with fixed sleep scheduling, SILENCE with
adaptive sleep scheduling, and LEACH-gen. The energy cost for SILENCE is more
than the one incurred by a sensor system employing LEACH-gen and CS (HorzVer-
diff), which select REPs in a uniform-random manner. This can be attributed to the
control overhead incurred by SILENCE. However, the average error in reconstruction
is higher for LEACH-gen and CS (HorzVer-diff) compared to SILENCE, as shown in
Figure 13(b). This is because SILENCE selects REPs based on the manifestations
(data), whereas LEACH-gen and CS (HorzVer-diff) randomly choose REPs and do not
adapt the number of REPs to the data variation. The inability of LEACH-gen and CS
(HorzVer-diff) to adapt is evident in Figure 13(c). CS (HorzVer-diff) shows lower recon-
struction error than LEACH-gen, as CS (HorzVer-diff) uses L1 optimization to minimize
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Fig. 12. Simulation results. Number of REPs over time and percentage of nodes within error threshold set
by the user (here, ek

th = 0.5◦C for temperature) for a slow-varying field (a), moderate-varying field (b), and
fast-varying field (c).

reconstruction error. The extra control overhead incurred by SILENCE (manifesting
itself as a marginal increase in energy expenditure as shown in Figure 13(a) for a slow-
varying field) is justified by the significant reduction in reconstruction error compared
to LEACH-gen and CS (HorzVer-diff), as shown in Figure 12(c).

From Figure 13, one can clearly infer that SILENCE captures the variation in the
manifestations and self-heals by adjusting the number of REPs using marginally ad-
ditional control overhead in exchange for higher reconstruction accuracy at the sink.
The control overhead to select the best set of REPs is negligible compared to the case
when all nodes in the WSN are transmitting sensed data to the sink.

6.3. Multiple Manifestations

We also performed simulations to verify the performance of SILENCE when multi-
ple manifestations (temperature and humidity) are taken into consideration. Several
strategies can be adopted to adapt SILENCE for sensor networks monitoring more
than one manifestation. Following are two possible strategies: (1) two nodes n and m
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Fig. 13. Simulation results. (a) Average energy cost incurred by different adaptive sampling schemes.
(b) Average error of different adaptive sampling schemes for different rates of variation in manifestations.
(c) Average number of REPs of different adaptive sampling schemes.

are said to be potential-ASSOCs of each other only when they sense similar and cor-
related values for all the manifestations (i.e., only when ek

th and γ k
th are satisfied for all

k = 1, . . . , K and REPs are selected accordingly) and (2) a different set of REPs are
selected individually for each manifestation k to transmit data to the sink.

Figure 14 shows the performance of SILENCE when we follow the first strategy
to monitor and reconstruct two manifestations, temperature and humidity, simulta-
neously. The model for humidity is again based on the actual data observed in our
measurements and experiments on the testbed setup. Figure 14(a) shows a snapshot of
the spatial distribution of two manifestations (above), temperature and humidity, and
their reconstruction (below) based on the data obtained from the REP nodes selected
using the first strategy. From Figure 14(b), one can clearly observe that approximately
40% of the nodes are sufficient to reconstruct two manifestations with a very high
reconstruction accuracy, by leveraging similarity and correlation of sensor values (of
both manifestations) in proximal sensor nodes. This is because the two manifestations
are by nature highly correlated, and the choice of REPs even when they are considered
separately may be the same.
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Fig. 14. Simulation results. (a) Actual distribution and reconstruction of temperature and humidity. (b)
Performance of SILENCE scheme with multiple manifestations when the following strategy is used: two
nodes n and m are said to be potential-ASSOCs of each other only when they sense similar and correlated
values for all manifestations, and REPs are selected accordingly.

7. CONCLUSIONS

We designed, developed, and implemented a distributed adaptive sampling solution—
SILENCE—to reduce redundancy in raw data through selective representation without
compromising on accuracy of reconstruction of the phenomenon at the sink. We used
similarity and correlation in the sensed data and on the fly optimized the number of
representatives reporting to the sink in a distributed manner in both space and time
domains. SILENCE was evaluated through experiments on a testbed of sensors moni-
toring temperature distribution in a rack of servers and through extensive simulations
on TOSSIM, the TinyOS simulator. The results obtained through experiments and
simulations are encouraging and provide insights into the performance gains that can
be achieved by our autonomic adaptive sampling solution in terms of energy efficiency,
reduction in communication overhead, and (most importantly) reconstruction accuracy.
With regard to multiple manifestations, we are exploring more sophisticated strate-
gies, such as ones that associate weights to each manifestation (while determining
similarity and correlation). This will enable SILENCE to jointly handle uncorrelated
manifestations (e.g., humidity and luminescence).
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