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Abstract—Localization underwater has been known to be chal-
lenging due to the limited accessibility of the Global Positioning
System (GPS) to obtain absolute positions. This becomes more
severe in the under-ice environment since the ocean surface
is covered with ice, making it more difficult to access GPS
or to deploy localization infrastructure. In this paper, a novel
solution that minimizes localization uncertainty and communi-
cation overhead of under-ice Autonomous Underwater Vehicles
(AUVs) is proposed. Existing underwater localization solutions
generally rely on reference nodes at ocean surface or on local-
ization infrastructure to calculate positions, and they are not
able to estimate the localization uncertainty, which may lead to
the increase of localization error in under-ice environments. In
contrast, using the notion of external uncertainty (i.e., the position
uncertainty as seen by others), our solution can characterize an
AUV’s position with a probability model. This model is further
used to estimate the uncertainty associated with our proposed
Doppler-based localization technique – a novel one that can
exploit ongoing communications for localization, as well as that
associated with the standard distance-based localization. Based
on this uncertainty estimate, we further propose algorithms to
minimize localization uncertainty and communication overhead.
Our solution is emulated and compared against existing solutions,
showing improved performance.

I. INTRODUCTION

UnderWater Acoustic Sensor Networks (UW-ASNs) [1] con-

sist of a number of sensors and vehicles that interact to collect

data and perform tasks in a collaborative manner underwater.

They have been deployed to carry out collaborative monitoring

tasks including oceanographic data collection, climate monitor-

ing, disaster prevention, and navigation. Autonomous Under-

water Vehicles (AUVs) are widely believed to be revolution-

izing oceanography and are enabling research in environments

that have typically been impossible or difficult to reach. For

example, AUVs have been used for continuous measurement

of fresh water exiting the Arctic through the Canadian Arctic

Archipelago and Davis Strait in order to study the impact of

climate change to the circulation of the world’s oceans. The

ability to do so under ice is important so that, for example,

scientists can measure how much fresh water flows through

the strait – and at what times of year – so they have a baseline

for comparison in coming years.

For these missions, position information is of vital im-

portance in mobile underwater sensor networks, as the data

collected has to be associated with appropriate location in order

to be spatially reconstructed onshore. Even though AUVs can

This work was supported by the NSF CAREER Award No. OCI-1054234.
The authors would like to thank William Somers and Kalyan Yalamanchi

for their work on performance evaluation and helpful reviews.

surface periodically (e.g., every few hours) to locate themselves

using Global Positioning System (GPS) – which does not work

underwater – over time, inaccuracies in models for deriving

position estimates, self-localization errors, and drifting due to

ocean currents will significantly increase the uncertainty in

position of underwater vehicle, which affects the performance

of communication solutions such as [2]. Moreover, in extreme

environments such as under ice, surfacing to get a GPS update

is hardly possible and, therefore, position information is highly

uncertain. In such environments, relying on standard navigation

techniques such as Long Baseline (LBL) navigation is difficult

as the use of static LBL beacons typically limits the operation

range to about 10 km [3] and requires great deployment efforts

before operation, especially in deep water (more than 100 m
deep).

As AUVs are becoming more and more capable and also

affordable, deployment of multiple AUVs to finish one mission

becomes a widely-adopted option. This not only enables new

types of missions through cooperation but also allows individ-

ual AUVs of the team to benefit from information obtained

from other AUVs. Existing localization schemes underwater

generally rely on the deployment of transponders or nodes with

underwater communication capabilities as reference points,

which requires either much deployment effort or much com-

munication overhead. Moreover, these schemes are not able to

estimate the uncertainty associated with the calculated position,

which is high in under-ice environments, and thus are not able

to minimize position uncertainty.

To address this problem, we propose a solution that uses only

a subset of AUVs without relying on localization infrastructure.

Specifically, a position uncertainty model in [4] is introduced

to characterize an AUV’s position. This model is extended to

estimate the uncertainty associated with the standard distance-

based localization technique, resulting in the distance-based

localization with uncertainty estimate (DISLU). We further

propose a Doppler-based technique with uncertainty estimation

capability, which is called Doppler-based localization with

uncertainty estimate (DOPLU). DISLU relies on packets (i.e.,

communication overhead) to measure the inter-vehicle distances

(i.e., ranging), which, in conjunction with positions of refer-

ence nodes (in general other AUVs), are utilized to estimate

the position. On the other hand, DOPLU, which measures

Doppler shifts from ongoing communications and then uses

these measurements to calculate velocities for localization,

removes the need for ranging packets. As DOPLU only relies

on relative measurements, it may not be able to fix displacement
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errors introduced by the rotation or position translation of

the AUV group. In this case, DISLU is executed to bound

such localization errors. Considering these tradeoffs, using the

uncertainty model, the localization error and communication

overhead of DISLU and DOPLU can be jointly considered and

algorithms are devised to minimize the localization uncertainty

and communication overhead while satisfying localization error

requirement.

Our solution offers a way to estimate the degree of uncer-

tainty associated with a localization technique and based on

this estimation it further minimizes both position uncertainty

and communication overhead. The contributions of this work

include: 1) a probability model to estimate the position uncer-

tainty associated with localization techniques; 2) an algorithm

to minimize localization uncertainty by selecting an appropriate

subset of reference nodes; 3) an algorithm to optimize the

localization interval in order to further minimize the localization

overhead; and 4) a Doppler-based localization technique that

can exploit ongoing communications for localization.

The remainder of this paper is organized as follows. In

Sect. II, we review the related work for localization algorithms

in UW-ASNs. We present the motivation and background in

Sect. III and propose our solution in Sect. IV; in Sect. V,

performance evaluation and analysis are carried out, while

conclusions are discussed in Sect. VI.

II. RELATED WORK

Localization is essential for underwater vehicle navigation

and UW-ASNs, where many localization solutions, as sum-

marized in [3] and [5], have been proposed. Due to space

limitation, we just review the work that is most related, i.e.,

localization in UW-ASNs using AUVs.

Short Baseline (SBL) and Long Baseline (LBL) systems

[3] are standard ways to localize vehicles underwater, where

external transponder arrays are employed to aid localization.

In SBL systems, position estimate is determined by measuring

the vehicle’s distance from three or more transponders that are,

for example, lowered over the side of the surface vessel. LBL

systems are similar to SBL, with the difference that an array of

transponders is tethered on the ocean bed with fixed locations.

In [6], a localization scheme called AUV Aided Localization

(AAL) is proposed, where position estimation is done using a

single AUV. In AAL, an AUV navigates a predefined trajectory,

broadcasts its position upon a node’s request, and fixes its

own position at the surface. Each node estimates the distances

to the AUV while the AUV is at different locations, using

the Round-Trip Time (RTT) between itself and the AUV.

Algorithms such as triangulation or bounding box can then

be used for position estimate. Another localization solution

called Dive-N-Rise Localization (DNRL) is proposed for both

static and mobile networks in [7]. DNRL is similar to AAL,

with the difference that ocean currents are considered and time

synchronization is required between nodes.

In [8], an online algorithm for cooperative localization of

submerged AUVs is designed, implemented, and evaluated

through experiments. This algorithm relies on a single surface

vehicle called Communication and Navigation Aid (CNA) for

autonomous navigation. Using the CNA’s GPS positions and

basic onboard measurements including velocity, heading and

depth, this algorithms can use filtering techniques such as Ex-

tended Kalman Filter (EKF) to bound the error and uncertainty

of the on-board position estimates of a low-cost AUV.

Among existing underwater localization techniques (which

are generally not suitable for under-ice environments), relatively

few under-ice localization techniques have been proposed.

Despite these efforts, the technology remains expensive and

out of reach for researchers. Current techniques employed

in the under-ice environment include combinations of either

dead-reckoning using inertial measurements, sea-floor acoustic

transponder networks such as SBL or LBL, and/or a Doppler

Velocity Log (DVL) that can be either seafloor or ice relative

[3]. These current approaches require external hardware, are

cost prohibitive, and suffer from error propagation. For accurate

dead reckoning, highly accurate sensors are required because

magnetic navigation systems are subject to local magnetic field

variations and gyros are subject to drift over time. Quality

inertial navigation sensors often cost more than $10,000 [3].

In contrast, our solution is much more economical as it does

not require these expensive sensors.

Two solutions for underwater collaborative localization using

a probability framework are proposed in [9] and [10], where a

sum-product algorithm and a Markov process that are based

on the so-called factor graph are used to model the joint

distribution of multiple nodes. Both solutions require the global

information of the nodes that are involved in localization, which

leads to high computation complexity and communication

overhead. Our solution offers another probability framework

that leverages the self-estimated uncertainty distribution for

estimation of other nodes. Therefore, global information is

not required, resulting in reduced computation complexity and

communication overhead.

III. MOTIVATION AND BACKGROUND

In UW-ASNs, inaccuracies in models for position estimation,

self-localization errors, and drifting due to ocean currents

will significantly increase the uncertainty in position of an

underwater vehicle. Hence, using a deterministic point is not

enough to characterize the position of an AUV. Furthermore,

such a deterministic approach underwater may lead to problems

such as routing errors in inter-vehicle communications, vehicle

collisions, loss of synchronization, mission failures. In order to

address the problems due to position uncertainty, we introduce

a probability model to characterize a node’s position. In many

applications such as geographic routing, AUVs need to esti-

mate the positions of themselves and other AUVs’. Therefore,

depending on the view of the different nodes, two forms of

position uncertainty are defined, i.e., internal and external

uncertainty, the position uncertainty associated with a particular

entity/node (such as an AUV) as seen by itself and that as seen

by others respectively.

These two notions introduce a shift in AUV localization:

from a deterministic to a probabilistic view. This shift can

then be leveraged to improve the performance of solutions for

problems in a variety of fields. For example, in UW-ASNs,

using the external-uncertainty region, routing errors can be

reduced and a node can estimate better the transmission power
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to guarantee the Signal-to-Noise Ratio for correct data reception

by taking into account not only channel impairments but also

position uncertainty [4]. The notion of external uncertainty can

also be used in underwater robotics to minimize the risk of

vehicle collisions; and in underwater localization to decrease

the position uncertainty by selecting a proper subset of nodes

to be used as “references”, as shown later.

Many approaches such as those using Kalman Filter (KF)

[11] have been proposed to estimate the internal uncertainty

assuming that the variables to be estimated have linear rela-

tionships between each other and that noise is additive and

Gaussian. While simple and quite robust, KF is not optimal

when the linearity assumption between variables does not hold.

On the other hand, approaches using non-linear filters such

as the extended or unscented KF attempt to minimize the

mean squared errors in estimates by jointly considering the

navigation location and the sensed states or features such as

underwater terrain features, which are non-trivial, especially in

an unstructured underwater environment.

Let us denote the internal uncertainty, a 3D region associated

with any node j ∈ N where N is the set of network nodes,

as Ujj , and the external uncertainties, 3D regions associated

with j as seen by i, k ∈ N , as Uij and Ukj , respectively

(i 6= j 6= k). In general, Ujj , Uij , and Ukj are different from

each other; also, due to information asymmetry, Uij is in general

different from Uji. External uncertainties may be derived from

the broadcast/propagated internal-uncertainty estimates (e.g.,

using one-hop or multi-hop neighbor discovery mechanisms)

and, hence, will be affected by end-to-end (e2e) network latency

and information loss.

IV. PROPOSED SOLUTION

With the notion of external uncertainty, we can model the

uncertainty associated with localization techniques. Based on

this uncertainty, optimization problems are formulated to mini-

mize localization uncertainty and communication overhead. In

this section, we first show how external uncertainty can be

used to estimate the uncertainty with the standard distance-

based localization technique (i.e., DISLU). Then we propose a

novel Doppler-based localization technique DOPLU that jointly

estimates localization uncertainty. DISLU requires ranging

packets to measure the distances for position calculation, which

introduces communication overhead. This weakness in DISLU

can be offset by DOPLU, which exploits ongoing inter-vehicle

communications to avoid the need for ranging packets. Such

an ‘opportunistic’ approach (i.e., DOPLU) does not guarantee

correct absolute locations (as Doppler shifts only characterize

relative position change) so the team of AUVs needs to go

back to DISLU to correct the locations when the error is too

large. Based on this idea, we propose algorithms to solve two

optimization problems, one for minimization of localization

uncertainty and the other for minimization of communication

overhead.

The communication protocol for our solution is presented

in Fig. 1. Each AUV first runs DISLU using the distances

measured from the round-trip time. Then, DOPLU is run using

Doppler-shift information extracted from inter-vehicle packets.

By overhearing the ongoing packets from the reference nodes,

i

j

k

l
time

DISLU

Localization

Localization

DOPLU DOPLU DISLU

Ts

Tp

Fig. 1. Overview of the proposed approach (paired arrows represent the start
and the end of one transmission).

AUV i estimates the Doppler shifts and then extracts the

relative velocity, from which the AUVs calculate their absolute

velocities. DISLU is run to fix the localization error introduced

by DOPLU after Tp, which is the time after the last DISLU is

started (Ts is the duration for which enough Doppler shifts are

collected to estimate the position).

Both DISLU and DOPLU use the external uncertainty and

corresponding probability distribution function (pdf) to estimate

the uncertainty resulted from the localization technique, i.e., the

internal uncertainty and pdf of the AUV running the localiza-

tion algorithm. Then this internal uncertainty information is

broadcast for other AUVs to estimate external uncertainties.

Our previous work in [4] provided a statistical solution to

estimate the internal and external uncertainty, which is used

for initial estimation here.

A. Distance-based Localization with Uncertainty Estimate

(DISLU)

We present here the DISLU technique, which is based on the

following idea: to estimate its own position, vehicle i needs

1) to estimate the distances between itself and its reference

vehicles, and 2) to estimate its own position based on these

distances.
DISLU relies on the round-trip time TRTT to measure the

inter-vehicle distance. By extracting the one-way propagation
time, i is able to calculate the inter-vehicle distance. That is,
the distance between transmitter i and receiver j is dij = c ·

(TRTT−T
(TX)
i −T

(TX)
j −T

(hold)
j )/2, where T

(TX)
i and T

(TX)
j

are the duration to transmit the packet at i and the duration
to transmit acknowledgement at j (i.e., transmission delays),

T
(hold)
j is the holdoff time of j to avoid collisions. To reduce

the transmission time, we can use the short ping packets (e.g.,
provided by WHOI modem). Once j receives the ping packet, it

starts a hold-off timer, T
(hold)
j , which is a uniformly distributed

random variable in [0, 2Tmean
hold ] where Tmean

hold is given by,

Tmean
hold = (1−

dij
R

)τ +
φij

c
, (1)

where dij is the distance from i to j, τ is the estimated

transmission time for the current packet, c = 1500 m/s is

the propagation speed of acoustic waves, R is the transmission

radius of the underwater modem, and φij = max{0, R− dij}.
The first term in (1) gives less time to the neighbor that is

closer to i, and the second term is the extra delay that a node

should wait so that all the nodes receive the packet. This gives

fairness by providing synchronization in starting the hold-off
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timers of all the nodes receiving the data packet. T
(hold)
j is

then embedded in the acknowledge packet for i’s information.

After the calculation of dij’s, i estimates its own position

as the point with the least mean squared error to the reference

nodes. Then, i estimates its internal uncertainty region using

conditional probability and the distribution of the reference

nodes within their external-uncertainty regions.
Given the set of i’s neighbors Ni, the external uncertainty

regions Uij , the distances dij , and the pdf of j within region
Uij , ∀j ∈ Ni, i can estimate the pdf of being at generic point
p as

g(Pi = p) =

∫

pj∈Uij ,j∈Ni

g(Pi = p,
⋂

j∈Ni

Pj = pj)

=

∫

pj∈Uij ,j∈Ni

[

g(Pi = p|
⋂

j∈Ni

Pj = pj)

· g(
⋂

j∈Ni

Pj = pj)
]

. (2)

Here g(Pi = p) is the pdf of the position of i at point p, g(|)
denotes conditional probability function. In our solution, p is
calculated as the point that has the minimum squared error, i.e.,
p ∈ Si, where Si ≡ {q = argmin

∑

j∈Ni
‖d(p, pj) − dij‖

2}
(i.e., Uii = Si). Here, d(p, pj) is the distance between point p
and pj . Note that Si may have more than one element due to
the Euclidean norm (e.g., there are two possible positions for
the case with three reference nodes and corresponding distances
to them known) and p may not be uniformly distributed in Si

if more position constraints are given. Here we assume p to be
uniformly distributed in Si. In other words, we have

g(Pi = p|
⋂

j∈Ni

Pj = pj) =

{

1/|Si|, p ∈ Si

0 , p 6∈ Si
, (3)

where |Si| is the number of elements in Si if Si is a discrete set,

or the area (or volume) of Si if Si is a non-empty non-discrete

set (e.g., the case with two references).
The joint pdf, g(

⋂

j∈Ni
Pj = pj), can be approximated as,

g(
⋂

j∈Ni

Pj = pj) ≈
∏

j∈Nj

g(Pj = pj), (4)

as the distributions of these AUVs is approximately indepen-
dent. Since Tp and Ts are generally large (see Sect.IV-C), the
positions of AUVs can be treated as independent after drifting
for a long time (while accuracy derivation of the joint pdf is
rather difficult). Therefore, (2) can be expanded as,

g(Pi = p) ≈

∫

pj∈Uij ,j∈Ni

[

g(Pi = p|
⋂

j∈Ni

Pj = pj)

·
∏

j∈Nj

g(Pj = pj)
]

. (5)

Hence i’s internal uncertainty Uii with g() being the pdf

is estimated, which is then broadcast to other AUVs. AUVs

receiving this information then use Uii to estimate i’s external

uncertainty.

B. Doppler-based Localization with Uncertainty Estimate

(DOPLU)

DOPLU runs between two consecutive run of DISLU. Obvi-

ously, whenever the Doppler shifts from more than 3 nodes

are extracted, DOPLU can be run. The time between two

consecutive runs of the DISLU is divided into sub-slots with

appropriate duration Ts (Fig. 1) so that the DOPLU will be run

at an appropriate frequency. Within each sub-slot, the vehicle

that runs DOPLU extracts Doppler shifts from the packet it

overhears (even if the packet is not intended to be received by

it) from the reference vehicles. With the additional information

it obtains from the packet header (such as velocity of the

reference node), it computes its own absolute velocity, which is

then used to estimate its own position and internal uncertainty.

This reduces the communication overhead for sending packets

to estimate inter-vehicle distance.

An algorithm is designed so that Ts can be adjusted dynam-

ically according to the frequency of ongoing communication

activities. Within Ts, a AUV is expected to collect enough

Doppler shifts from its reference neighbors so that the DOPLU

algorithm runs efficiently. Note that if Ts is too small, it is

very likely that the velocity calculated by DOPLU is close to

that obtained from the last calculation, which means waste of

computation resources. On the other hand, Ts should not be

too large as it would lead to too much localization error. After

all, the less frequent a AUV calculates its position, the more

position error accumulates.

In the rest of this section, we focus on the main problem,

i.e., how to estimate the position and internal uncertainty when

Doppler shifts are available, and leave the optimization of

Ts in Sect. IV-C. Using the Doppler shifts regarding to the

reference nodes, i can estimate its own absolute velocity using

the projected positions (i.e., by adding history position with

history velocity times the time passed) and velocities. Using

this relationship for all reference nodes, i obtains an equation

group to solve, where absolute velocity −→vi can be estimated.
To see how to calculate the absolute velocity, assume that at

the end of one sub-slot, AUV i has collected the Doppler shift
∆fij from reference node j. From the definition of Doppler

shift, we have ∆fij = −
−→
vij◦

−−−→
PiPj

‖
−−−→
PiPj‖

f0
c

, where vij is the relative

velocity of i to j,
−−→
PiPj is the position vector from i to j, f0 is

the carrier frequency, c = 1500 m/s is the speed of sound, and
◦ is the inner product operation. From this equation, we have

−→
vij ◦

−−→
PiPj

‖
−−→
PiPj‖

= −∆fij
c

f0
. (6)

Note that we assume the Doppler shift is estimated accurately.

In reality, the frequency-dependent Doppler frequency spread

is usually significant due to the inherently wideband nature of

the underwater acoustic channel with low Q-factor. Moreover,

the temporary variations in factors such as temperature, salinity,

depth and ocean surface affect the acoustic speed and propaga-

tion path, while drifting due to ocean currents affects the motion

of the transmitter and the receiver. All these lead to randomness

in the Doppler measurements. Therefore, estimation of Doppler

shifts is non-trivial and some solutions such as [12] and [13]

have been proposed. To apply DOPLU, special design such as

OFDM communication [14] can be applied in physical layer to

deal with the generated inter-symbol interference. In this paper,

we focus on the localization solution itself and assume the

Doppler shift reading from acoustic modem - where appropriate

Doppler estimation techniques have been applied - is accurate.

Consideration of the randomness in Doppler reading in DOPLU

is left as future work.
From (6), assume that i has collected the Doppler shifts of
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N
(ref)
i reference nodes, we then have an equation group with

N
(ref)
i equations. We then can derive i’s velocity −→vi . Assume

−→
vi = (v

(i)
x , v

(i)
y , v

(i)
z ) and

−−−→
PiPj

‖
−−−→
PiPj‖

= (α
(ij)
x , α

(ij)
y , α

(ij)
z ), (6)

is then −→
vij ◦

−−−→
PiPj

‖
−−−→
PiPj‖

= (−→vi −
−→
vj) ◦

−−−→
PiPj

‖
−−−→
PiPj‖

= (v
(i)
x −

v
(j)
x )α

(ij)
x + (v

(i)
y − v

(j)
y )α

(ij)
y + (v

(i)
z − v

(j)
z )α

(ij)
z = −∆fij

c
f0

.
By manipulating this equation, we have

v(i)x α(ij)
x + v(i)y α(ij)

y =−∆fij
c

f0
− v(i)z α(ij)

z + v(j)x α(ij)
x

+ v(j)y α(ij)
y + v(j)z α(ij)

z . (7)

In this equation, v
(i)
x and v

(i)
y in the left-hand side are variables

to be solved, whereas v
(i)
z in the right-hand side can be derived

from pressure sensor reading, (α
(ij)
x , α

(ij)
y , α

(ij)
z ) is the normal-

ized vector of
−−→
PiPj , and (v

(j)
x , v

(j)
y , v

(j)
z ) is obtained from the

velocity information embedded in the overheard packet header

of j.

Considering all the N
(ref)
i reference nodes, we can obtain

a linear equation group, which can be expressed in a matrix
form as Ax = b, where

A =









αi1
x αi1

y

αi2
x αi2

y

· ·

α
iN

(ref)
i

x α
iN

(ref)
i

y









,x =

[

υx

υy

]

,b =









bi1
bi2
·

b
iN

(ref)
i









. (8)

Here bij = −∆fij
c
f0
− v

(i)
z α

(ij)
z + v

(j)
x α

(ij)
x + v

(j)
y α

(ij)
y +

v
(j)
z α

(ij)
z . We want to find the optimal x∗ such that the sum of

squared errors is minimized. That is,

x
∗ = argmin ‖b−Ax‖2. (9)

From matrix theory, x∗ can be solved as x∗ = (AT
A)−1

A
T
b.

Once the velocity is calculated, the position of i is updated as

pi = p′i +
−→
v · Ts, where −→v = [v

(i)
x , v

(i)
y , v

(i)
z ]T .

Assume that the uncertainty regions Uij and the distribu-

tion pdf of j within region Uij are known (by embedding

these parameters in the header of the packet), ∀j ∈ Ni, i
can estimate the pdf of being at point p as g(Pi = p) ≈
∫

pj∈Uij ,∀j∈Ni

[

g(Pi = p|
⋂

j∈Ni
Pj = pj) ·g(

⋂

j∈Ni
Pj = pj)

]

.

Similar to the case of DISLU, i can calculate the distribution

of its own location and, hence, its internal uncertainty region.
Minimization of Location Uncertainty: Obviously, local-

ization using different references leads to different estimation
of internal uncertainty and corresponding pdf. Our objective
is to minimize the estimated internal uncertainty. Using our
notions of internal and external uncertainty, this can be achieved
by solving an optimization problem. To measure the degree of
uncertainty, we use information entropy as the metric, i.e.,

H(Uij , gij) = −

∫

p∈Uij

gij(p) log(gij(p))dp. (10)

The bigger H(Uij , gij) is, the more uncertain Uij is. The

reason to use information entropy instead of simply the size of

uncertainty region is that it can better characterize uncertainty.

Example: Assume that an AUV’s position is distributed in

[0,10] along x-axis with pdf being 9.9 in [0,0.1] and 0.1/99

in [0.1, 10] (Case 1). Then its entropy is -3.17 bits, which is

less than the entropy 3.32 bits when the AUV is uniformly

distributed in [0,10] (Case 2) or the entropy 3 bits when the

AUV is uniformly distributed in [0,8] (Case 3). Obviously Case

1 is the most certain in these 3 cases even though Case 2 has the

same size and Case 3 has the smallest size of the region. Note

that the information flow between AUVs can occur in loops;

this may not amplify errors of the positioning algorithm, as our

problem selects the neighbors that can minimize the uncertainty.
With this metric, the problem to minimize localization un-

certainty can be formulated as,

Given: Ni,Uij , gij();

Find: A∗
i ; Minimize: H(Uii, gii);

S.t.: Uii ≡ {q = argmin
∑

j∈Ai

‖d(p, pj)− dij‖
2}; (11)

g(Pi = p) =

∫

pj∈Uij ,j∈Ai

[

g(Pi = p|
⋂

j∈Ni

Pj = pj)

·
∏

j∈Ai

g(Pj = pj)
]

; (12)

|Ai| ≥ 3; Ai ⊂ Ni. (13)

Here Ai represents a subset of i’s reference nodes, (11) and

(12) estimate the internal uncertainty and corresponding pdf

when nodes in Ai are used as references; and (13) are the

constraints for Ai so that enough reference nodes are selected

for localization.

To reduce the complexity, we can convert an uncertainty

region (internal or external) into discrete counterparts. That is,

we divide an uncertainty region into a finite number of equal-

size small regions. When the number Ki of small regions is

sufficiently large, the pdf of the AUV’s position on a point

– such as the centroid – in this small region can therefore

be approximated by the probability on a small region. Hence

the estimated external-uncertainty region can be approximated

as the region contained in the hull of these estimated points.

The pdf functions are also be approximated by the probability

mass functions on discrete points, which simplifies the pdf

estimation. The above optimization can then be solved using

exhaustive search algorithm after the discretization. The com-

putation complexity of the exhaustive search is O(2|Ai|K
|Ai|
i ).

Since the number of AUVs is generally small, this complexity

is mainly decided by Ki. Depending on the computation

capability of the onboard processor, appropriate Ki can be

used. Further improvement of the solution can be done after

converting it into appropriate optimization that can be solved

efficiently and we leave this as future work.

C. Minimization of Communication Overhead

In this section, we discuss how to optimize Ts and Tp so

that localization overhead can be minimized while keeping the

localization uncertainty low. We first propose an algorithm to

dynamically adjust Ts in order to maintain the performance of

DOPLU. Then, Tp is optimized to minimize the localization

overhead.

As for Ts, it should be large enough so that packets from

enough reference nodes are overheard. Suppose Kmin is the

minimum number of reference nodes (or |Ai| if the opti-

mization algorithm in Sect. IV-B is used) so that x
∗ can be

calculated using DOPLU. In the beginning, Ts is initialized as

Ts = R
c
+ TTX · Kmin, i.e., the minimum time to overhear

packets from Kmin reference nodes. Suppose that during the

last T ′s period, Doppler shifts from N ′ reference nodes with
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Fig. 2. Bellhop profile for typical Arctic environment.

smaller degree of uncertainty (seen by i) than i’s are received.

On average, it takes T ′s/N
′ to receive a useful Doppler shift.

Then, the expected time to receive Kmin useful Doppler shifts

is T ′s ·Kmin/N
′. We update Ts using a weighted average. That

is, Ts = β · T ′s + (1− β) · T ′s ·Kmin/N
′, where β ∈ (0, 1) is a

weight factor.
Using internal and external uncertainty, we can also optimize

the interval Tp running DISLU. By optimizing Tp, we minimize
the overhead to use DISLU and hence the overall overhead.
DISLU is run when the localization error is large. The local-
ization error can be estimated by calculating the distance from
the position estimated by DISLU to that estimated by DOPLU.
When the localization error is greater than a threshold dth,
DISLU is run to correct the error. Since the position is not
deterministic, this requirement is expressed in a probabilistic
way. That is, DISLU should be run when the probability of the
localization error being over dth is above a threshold probability
γ. Therefore, to minimize the overhead of running DISLU, Tp

should be maximal under the constraint that the probability of
the localization error being over dth is below γ. This can be
formulated into the following optimization problem,

Given: Uij , gij(), γ;

Find: T ∗
p ; Maximize: Tp;

S.t.: Pr{‖
−−−−−−−−→
pi(Tp)p̃i(Tp)‖ > dth} < γ,

where pi(Tp) and p̃i(Tp) are the prediction positions using the

DOPLU and DISLU after Tp from the last DISLU run time,

respectively. This prediction of future internal uncertainty is

based on the current estimated internal uncertainty and AUV’s

trajectory. A solution has been proposed in [4] for underwater

gliders (one type of buoyancy-driven AUVs), which we adopt

in this work. As the previous optimization problem, we can

also convert it into discrete variable optimization problem and

solve it in a similar way. Depending on the prediction method

and the type of AUVs, the computation complexity varies. For

example, using the prediction method in [4], the computation

complexity is O(KiNsmp) for underwater gliders with Nsmp of

position samples. Note that Ts and Tp can be jointly optimized,

which is more complicated and hence is left as future work.

V. PERFORMANCE EVALUATION

The communication solution is implemented and tested on

our underwater communication emulator [15]. This emulator is

composed of four WHOI Micro-Modems and a real-time audio

processing card to emulate underwater channel propagation.

ICE

GPS

Scenario 1

Scenario 2

AUV5

AUV2

AUV3

AUV4

AUV1

AUV5

AUV3

AUV4

AUV1

AUV2

Fig. 3. Two scenarios for simulations: different dotted circles represent
different scenarios.

The multi-input multi-output audio interface can process real-

time signals to adjust the acoustic signal gains, to introduce

propagation delay, to mix the interfering signals, and to add

ambient/man-made noise and interference. Our solution is

compared against AAL, DNRL, and CNA, as introduced in

Sect. II, under an environment that is described by the Bellhop

model [16]. We use the typical Arctic sound speed profile

as in [17] and the corresponding Bellhop profile is plotted

in Fig. 2. Note that we use 25 KHz, the sound frequency

in use for our WHOI modem. We modify AAL, DNRL, and

CNA, as they were originally designed for settings that are

quite different from the under-ice environment. Specifically,

AAL, DNRL and CNA all use the AUV that surfaces last as

reference node because intuitively the shorter an AUV stays

underwater (the less time it stays in an uncertain environment

after a GPS fix), the less uncertain its position is. Triangulation

is employed for position calculation in AAL and DNRL, while

EKF filtering is used in CNA. We are also interested in seeing

the performance improvement that we get using the external

uncertainty notion. Therefore, we implement another version

of our proposed solution without using external uncertainty,

i.e., forcing the position uncertainty to be zero. We denote this

modified version and the original version by ‘Proposed solution

w/o EU’ and ‘Proposed solution w/ EU’, respectively.
In order to evaluate the localization performance, two met-

rics, the localization error and the deviation of error, are used.
Localization error is defined as the distance between the actual
and the estimated AUV position. The deviation of error is the
amount the localization error deviating from the total averaged
error. The average localization error Ē and deviation of error
σ are plotted. The formulae of Ē and σ are expressed as,

Ē =
1

Lt

Lt
∑

j=1

(

1

N

N
∑

i=1

Ei

)

;σ =

√

√

√

√

1

N

N
∑

i=1

(

Ei − Ē
)2
, (14)

where N is the number of AUVs in the UW-ASN, Ei represents

the localization error for each AUV operating in the UW-ASN

at that particular time, and Lt is the number of times the

localization is performed, such that Lt =
Tend

∆T
.

A. Simulation Scenarios

The parameters for our simulations are listed in Table I.

We further assume that ongoing communication packets are

generated according to the Poisson traffic model with arrival

rate being 3 packets per minute. As shown in Fig. 3, we utilize

the following two specific scenarios.
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(a) Location: Bayfront Park bay, Lavallette, NJ
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(b) Doppler speeds measured at node 1.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

Time [s]

D
o
p
p
le

r 
S

p
e
e
d
 [

m
/s

]

(c) Doppler speeds measured at node 2.

Fig. 4. Doppler speed measurement. Only part of the measurements are plotted for clear visualization. Time coordinates vary due to different reception time.
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(a) Localization error comparison (6 AUVs)
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(b) Deviation comparison (6 AUVs)
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(c) Localization error for number of AUVs

Fig. 5. Scenario 1 with Typical Currents: under the ice mission with no resurfacing.
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(a) Localization error comparison (6 AUVs)
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(b) Deviation comparison (6 AUVs)
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(c) Localization error for number of AUVs

Fig. 6. Scenario 1 with Extreme Currents: under the ice mission with no resurfacing.

TABLE I
SIMULATION PARAMETERS

Total Time 10600 s (∼2.94 h)
Time Interval, ∆T 60 s

Deployment 3D Region 2000(L)×2000(W)×1000(H) m3

Confidence Parameter, α 0.05
AUV Velocity 0.25-0.40 m/s
AUV Depth Range [0,1000] m
Typical Currents 0.01-0.03 m/s [18]
Extreme Currents 0.04-0.06 m/s [18]
Water Temperature Range [-2,2] ◦C

Salinity Range [32.5,35] ppt

Scenario 1: This scenario involves a team of AUVs who

collaboratively explore an underwater region located under ice.

These AUVs remain under-ice for the duration of the mission

and do not return to the surface until the mission is completed.

Scenario 2: This scenario is similar to the first except

that individual AUVs will periodically surface to update their

positioning via GPS. These AUVs take turns to go back to

the surface at a predefined interval, which is 4000 s in our

simulations. In order to avoid ice cover, these AUVs return to

the edge of the ice sheet where they were deployed. Once an

AUV surfaces, it acquires a GPS fix and updates its current

coordinate position (position uncertainty is also reset).
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(b) Deviation comparison (6 AUVs)
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(c) Localization error for number of AUVs

Fig. 7. Scenario 2 with Typical Currents: under the ice mission with resurfacing.
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Fig. 8. Scenario 2 with Extreme Currents: under the ice mission with resurfacing.

Both scenarios are tested with typical and extreme currents,

whose speed ranges are listed in Table I. A random 3D

direction is chosen for the current throughout one round of

simulation. The Doppler data is based on the 6-hour Doppler

speed measurement that we took using WHOI modems on

November 20th, 2011 in the Bayfront Park bay, Lavallette, NJ,

as shown in Fig. 4. Our measurement shows that most of the

Doppler speeds are low, similar to the part we plot here. Note

that the right hand side in (6) is replaced with the measured

Doppler speed here as there is no need to calculate the Doppler

shifts.

B. Evaluation Results

Real time (one simulation run) localization errors and devi-

ations of error are plotted in the first two subfigures of Figs. 5-

8. Moreover, to obtain results of statistical significance, 250

rounds were conducted for varying numbers of AUVs. The

average errors for the AUV’s predicted location are plotted in

Figs. (5-8)(c) with 95% confidence intervals.

Scenario 1: As shown in Figs. 5 and 6, our original

solution ‘Proposed solution w/ EU’ performs the best. In the

typical current setting, ‘Proposed solution w/ EU’ obtains about

74.6% less error than ‘Proposed solution w/o EU’ while it

obtains 80.4% less error in the extreme current setting. This

is mainly due to the use of the external uncertainty model to

predict the position and distribution of the AUVs and the ability

to minimize the localization uncertainty. ‘Proposed solution

w/o EU’ ranks the second in terms of error performance

because an AUV can leverage the ongoing communications and

cooperation of other AUVs for localization. Even though CNA

uses EKF to predict the positions, its performance is worse

than ‘Proposed solution w/o EU’ since the AUV can only use

its own states for position estimation. On the other hand, CNA

is still better than DNRL and AAL due to the use of EKF filter,

and DNRL performs better than AAL since it takes the current

influence into account.

By comparing Figs. 5 and 6, we can see that under extreme

conditions, the localization error keeps increasing, since more

dislocation is incurred by the extreme currents. Interestingly

enough, we can see that the performance of our solution

without using external uncertainty is not much better than

that using CNA. In this case, using Doppler information does

not help improve the localization much since the position

uncertainties associated with other AUVs are also large and thus

the performance is not too much better than that of using EKF.

However, our solution using external uncertainty still performs

the best due to the ability to estimate the position uncertainty

and then use such information to minimize uncertainty.

Scenario 2: As shown in Figs. 7 and 8, the performance

ranking for these solutions closely resembles that in Scenario

1. However, the localization performance in Scenario 2 is much

better than that in Scenario 1 since AUVs can obtain position

correction periodically, as seen by comparing Figs. 5 with 7 (or

Figs. 6 with 8). From these figures, we can see that localization
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error and deviation decrease when AUVs surface, i.e., at 4000

s and 8000 s in the results. Moreover, we can see that for

typical current settings in Scenario 2, the localization error and

its deviation can stay within certain threshold for ‘Proposed

Solution w/ EU’, while the error of other solutions tends to

increase. This shows the effectiveness of our proposed solution

in minimizing the localization uncertainty.

Communication Overhead: Last, we compare the com-

munication overhead of our solutions against other solutions.

As shown in Fig. 9, ‘Proposed solution w/o EU’ achieves

less overhead than CNA, DNRL and AAL due to the ability

to exploit the Doppler shifts of ongoing communications for

localization, reducing the use of ranging packets. ‘Proposed

solution w/ EU’ has the biggest communication overhead in the

beginning because of the need to broadcast external uncertainty

information (such as pdf information). However, due to the

ability to optimize the update intervals Ts and Tp as in Sect.

IV-C, its communication overhead drops quickly to a level

that is lower than CNA, DNRL and AAL. CNA has higher

overhead than DNRL and AAL as CNA needs to broadcast

additional information such as velocities and sensor readings

for EKF while DNRL and AAL only need to broadcast the

position and time information that is embedded in the ranging

packet. Note that in ‘Proposed solution w/ EU’, to save the

overhead, when the AUVs broadcast the pdf information, they

only broadcast the key parameters if the pdf is one of the well-

known distributions (e.g., the average and standard deviation

for a normal distribution). Otherwise, the point mass function

of a finite number of points is broadcast.

VI. CONCLUSION AND FUTURE WORK

We proposed a localization solution that minimizes the

position uncertainty and communication overhead of AUVs

in the challenging under-ice environments. With the notion of

external uncertainty, position uncertainties of the AUV can be

modeled in a probabilistic way. This model is further used to

estimate the uncertainty resulted from localization techniques,

as shown for our proposed Doppler-based localization and the

standard distance-based localization. Algorithms are then pro-

posed to minimize the position uncertainty and communication

overhead. Our solution is implemented on WHOI modems

and compared with several existing localization techniques

using an acoustic communication emulator. It is shown that

our approach achieves excellent localization results with low

localization overhead. Further work will be to implement our

proposed localization solution on AUV platforms and evaluate

its performance in ocean experiments.
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