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Abstract Virtualized datacenters and clouds are
being increasingly considered for traditional
High-Performance Computing (HPC) workloads
that have typically targeted Grids and con-
ventional HPC platforms. However, maximizing
energy efficiency and utilization of datacenter re-
sources, and minimizing undesired thermal behav-
ior while ensuring application performance and
other Quality of Service (QoS) guarantees for
HPC applications requires careful consideration
of important and extremely challenging tradeoffs.
Virtual Machine (VM) migration is one of the
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most common techniques used to alleviate ther-
mal anomalies (i.e., hotspots) in cloud datacen-
ter servers as it reduces load and, hence, the
server utilization. In this article, the benefits of
using other techniques such as voltage scaling and
pinning (traditionally used for reducing energy
consumption) for thermal management over VM
migrations are studied in detail. As no single
technique is the most efficient to meet temper-
ature/performance optimization goals in all sit-
uations, an autonomic approach that performs
energy-efficient thermal management while en-
suring the QoS delivered to the users is proposed.
To address the problem of VM allocation
that arises during VM migrations, an innova-
tive application-centric energy-aware strategy for
VM allocation is proposed. The proposed strat-
egy ensures high resource utilization and en-
ergy efficiency through VM consolidation while
satisfying application QoS by exploiting knowl-
edge obtained through application profiling along
multiple dimensions (CPU, memory, and net-
work bandwidth utilization). To support our
arguments, we present the results obtained
from an experimental evaluation on real hard-
ware using HPC workloads under different
scenarios.

Keywords Cloud infrastructure · Virtualization ·
Thermal management · Energy-efficiency
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1 Introduction

1.1 Motivation and Background

Virtualized datacenters and clouds provide the
abstraction of nearly-unlimited computing re-
sources through the elastic use of consolidated
resource pools. These platforms are being increas-
ingly considered for traditional High-Performance
Computing (HPC) workloads that have typically
targeted Grids and conventional HPC platforms.
The scale and overall complexity of modern dat-
acenters are growing at an alarming rate (current
datacenters contain tens to hundreds of thousands
of computing and storage devices running com-
plex applications) and, hence, energy consump-
tion, heat generation, and cooling requirements
have become critical concerns both in terms of the
growing operating costs as well as their environ-
mental and societal impacts [1]. Addressing these
concerns while balancing multiple requirements,
including performance, Quality of Service (QoS),
and reliability, is thus an important task for service
providers.

Thermal awareness, which is the knowledge of
temperature distribution inside a datacenter, is es-
sential to maximize energy and cooling efficiency
as well as to minimize server failure rates. Hence,
in this article, we propose techniques to acquire
and characterize the thermal behavior of a dat-
acenter so to bestow self-protection and self-
healing capabilities on datacenter management
systems. Thermal-aware datacenter management

is aimed at minimizing both the impact on the
environment and the Total Cost of Ownership
(TCO) of datacenters without any increase in
the number of Service Level Agreement (SLA)
violations.

Prior work in the field of thermal management
explores efficient methods for improving heat ex-
traction through cooling system optimization as in
[20, 44–46] or methods for controlling heat gener-
ation [31, 48, 52] that focus on how to distribute
and migrate workloads (if necessary) in such a
way as to avoid undesired thermal behavior (e.g.,
overheating of computing equipment). However,
maximizing energy efficiency and utilization of
datacenter resources, minimizing undesired ther-
mal behavior, and ensuring QoS guarantees for
HPC application are conflicting goals. Careful
consideration of extremely challenging tradeoffs
among these goals is essential for addressing them
simultaneously.

1.2 Architecture and Goals

The long-term goal of our approach is to
autonomically manage datacenters using the in-
formation from sensors and taking decisions at
different levels (through controllers) based on
the optimization goals (e.g., performance, energy
efficiency, cost). To do this, we consider an archi-
tecture composed of layers belonging to different
abstract components with different responsibili-
ties but with the same common objectives. The
architecture (see Fig. 1) is composed of four lay-

Fig. 1 Layered architecture model
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ers: environment layer (which detects, localizes,
characterizes, and tracks thermal hotspots using
a hybrid sensing infrastructure composed of in-
built as well as external scalar temperature and
humidity sensors), physical resource layer (which
manages the hardware and software components
of servers), virtualization layer (which instanti-
ates, configures, and manages VMs), and applica-
tion layer (which is aware of the workload’s and
applications’ characteristics and behavior). For
autonomic reactive thermal management we focus
on the possible interactions among all the four
layers based on temperature, power consump-
tion, and application QoS requirements. Note that
the environment layer comprising of the hybrid
sensing infrastructure monitors both the micro
(chip and server level) as well as the macro (rack
and datacenter level) phenomena, i.e., tempera-
ture distribution, in the datacenter. The proposed
approach represents a significant and transfor-
mative shift towards cross-layer autonomics for
datacenter management problems, which have so
far been considered mostly in terms of individual
layers.

1.3 Approach

One component of our proposed solution contin-
uously monitors temperature changes and han-
dles thermal emergencies (using VM migrations,
voltage and/or frequency scaling, and pinning)
while ensuring that application performance is not
degraded. Another component strives to achieve
energy efficiency while adhering to SLAs by co-
locating compatible workloads (or VMs hosting
the workloads) in physical machines when VM
migration is chosen as the thermal-management
strategy. Compatibility among workloads is de-
termined through extensive HPC application
profiling. It is evident that the first component
involves cross-layer interactions among the vir-
tualization, physical, and the environment lay-
ers while the second component requires interac-
tions between the application and virtualization
layers. These two components together help us
realize our envisioned cross-layer thermal-aware
autonomic management of datacenters through
careful consideration of trade-offs among the re-
quirements from energy, application QoS, and op-

erating environment perspectives. Our approach
is twofold:

(1) Reactive thermal management: VM migration
is one of the most common techniques used
to alleviate thermal anomalies (i.e., hotspots)
in cloud datacenter’s servers by reducing the
load and, therefore, by decreasing the server
utilization. Switching off idle servers is also a
typical policy along with VM migration for
power management. In this article, we ex-
plore ways to take actions at the server side
before performing costly migrations of VMs,
including techniques that can be used as tem-
porary actions that may facilitate migrations
without incurring in additional penalty in
terms of server thermal behavior. We aim
at optimizing the energy efficiency of data-
centers while ensuring the QoS delivered to
the users. Specifically, we focus on exploiting
VM Monitor (VMM) configurations (such as
pinning techniques, i.e., CPU affinity) in Xen
platforms as well as Dynamic Voltage and
Frequency Scaling (DVFS) at the physical
resource layer to alleviate undesired ther-
mal behavior of the datacenter’s hardware
components. However, not always the same
mechanism is the most efficient to meet the
desired optimization goals.

(2) Application-centric VM allocation: To ad-
dress the problem of VM allocation—which
arises in the following two situations: initial
mapping of VMs to physical servers and mi-
gration of VMs from one physical server to
another in response to (reactive) undesired
thermal behavior and/or SLA violations—
we propose an application-centric energy-
aware VM allocation model. Our model can
help reduce the number of SLA violations,
avoid undesired thermal behavior, and mini-
mize the energy costs by improving resource
utilization.

In contrast to existing VM allocation solutions
that are aimed at satisfying only the resource uti-
lization requirement of an application along only
one dimension (CPU utilization), our approach
to VM consolidation considers the application’s
resource utilization requirements along multiple
dimensions, i.e., CPU, memory, disk I/O, and



450 I. Rodero et al.

network subsystems. In addition, our approach is
application centric as in [15, 17, 56] and, hence,
enables co-location of compatible VMs on servers
during consolidation. This co-location minimizes
the usual adverse effects of resource contention
and virtualization overhead on application per-
formance while retaining the benefits of server
consolidation. The aforementioned application
awareness is acquired through HPC benchmarks
profiling.

1.4 Contributions

The main contributions of this work are: (1) a
study of different reactive thermal management
techniques for virtualized and instrumented data-
centers from the energy perspective towards the
design of an autonomic approach, (2) a study
of the tradeoffs between performance, energy
efficiency, and thermal efficiency of the tech-
niques for HPC workloads, (3) development of an
autonomic reactive thermal-management solution
that leverages the knowledge gained in the afore-
mentioned studies to choose the most appropriate
techniques for alleviating thermal anomalies, (4)
creation of an empirical VM allocation model
from data obtained by running HPC workloads
extensively on a system with a general-purpose
rack server configuration, and (5) development of
a proactive application-centric VM allocation al-
gorithm that uses this empirical model. To support
the arguments of our approach, we present the re-
sults obtained from simulation and experimental
evaluation on real hardware using HPC workloads
under different scenarios.

To evaluate our proposed techniques for ther-
mal management of HPC cloud infrastructure,
we conducted the simulations and experiments
on real hardware using parallel workload traces
from real world HPC production systems. The
results obtained from simulations using real world
production HPC workload traces show that our
proactive VM allocation solution significantly
contributes to energy efficiency (12 % reduc-
tion in energy consumption) and/or optimization
of the application performance (18 % reduction
in execution time) depending on optimization
goals. Our reactive thermal management solution
in conjunction with the proactive consolidation

approach outperforms other traditional thermal
management approaches like load redistribution
(VM migrations) and Temperature-Aware (TA)
VM placement in terms of energy consumption
(up to 9 % less than that of TA’s), makespan (up
to 12 % less than that of TA’s), maximum server
operating temperatures (up to 10 % less than that
achieved by the load redistribution technique),
and percentage of time for which servers operate
in unsafe temperatures (up to 25 % less than that
achieved by the load redistribution technique).

The rest of the article is organized as fol-
lows. In Section 2, we review related work. In
Section 3, we discuss the temporal-spatial char-
acteristics of hotspots and our empirical-model-
based approach to reactive thermal management.
In Section 4, we describe our empirical VM al-
location model and present our VM allocation
algorithm, which uses this model. In Section 5,
we discuss our evaluation methodology as well
as the results we obtained from simulations and
empirical experiments on real hardware. Finally,
in Section 6, we conclude the article and outline
directions for future work.

2 Related Work

In this section, firstly, we review the state of the
art in thermal management [38, 45] at the envi-
ronment as well as application layers. Secondly,
we review power management techniques (such as
DVFS and pinning at the physical resource layer)
that we propose to exploit for energy-efficient
thermal management in place of costly VM migra-
tions. Thirdly, we discuss prior work in the field
of energy-efficient VM allocation, which is key
for VM migration decisions in reaction to thermal
anomalies. Finally, we review existing cross-layer
solutions, which are characterized by pair-wise
interactions between layers.

2.1 Thermal Management at the Environment
Layer

Prior research efforts in this area focus on man-
agement of heat extraction in a datacenter [20,
44–46]. In [16], Greenberg et al. profiled and
benchmarked the energy usage of 22 datacenters
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and concluded that the key to energy efficiency
is air circulation management (for effective and
efficient cooling). Lee et al. [26] propose a proac-
tive control approach that jointly optimizes the air
conditioner compressor duty cycle and fan speed
to prevent heat imbalance and to minimize the
cost of cooling in data centers. As many data-
centers employ raised floors with perforated tiles
to distribute the chilled air to racks, researchers
have tried to gain valuable insights into efficient
airflow distribution strategies in such datacenter
layouts [20, 44–46]. Other research efforts were
aimed at improving the efficiency of cooling sys-
tems through thermal profiling [27, 28, 47], which
is the extraction of knowledge about air and
heat circulation using measurements from scalar
sensors and mathematical models. However,
capturing this complex thermodynamic phenom-
ena using compute-intensive models [5, 37] (e.g.,
computational fluid dynamics) is prohibitive in
terms of computational overhead.

2.2 Thermal Management at the Application
Layer

Another popular approach to thermal manage-
ment has been controlling the heat generation
inside a datacenter [4, 18, 31, 32, 52] through
thermal-aware workload placement. Moore et al.
[31] propose the use of “offline experiments”
to characterize the thermodynamic phenomena
(heat recirculation) inside the datacenter and
schedule workloads by taking the temperature
distribution into account. In [32], Moore et al.
eliminate the need for the aforementioned offline
experiments and propose an online machine-
learning-based method to model the thermal be-
havior of the datacenter. Bash et al. [4] propose
a policy to place the workload in areas of a dat-
acenter that are easier to cool, which results in
cooling power savings. They use scalar temper-
ature sensor measurements alone to derive two
metrics that help decide whether to place work-
load on a server or not. Tang et al. [52] develop
a linear, low-complexity process model to predict
the equipment inlet temperatures in a datacenter
given a server utilization vector and formalize
(mathematically) the problem of minimizing the
datacenter cooling cost as the problem of minimiz-

ing the maximal (peak) inlet temperature through
task assignment. In [33], Mukherjee et al. explore
a spatio-temporal thermal-aware job scheduling
as an extension to spatial thermal-aware solutions
like [18, 31, 32, 52].

2.3 Power Management at the Physical Resource
Layer

Several research efforts propose methods to
jointly manage power and performance at the
physical resource layer. One of the most used
techniques in the last decades to reduce power
consumption is DVFS. Researchers have devel-
oped different DVFS scheduling algorithms and
mechanisms to save energy while provisioning re-
sources under deadline restrictions. Chen et al.
[7] address resource provisioning and propose
power management strategies with SLA con-
straints based on steady-state queuing analysis
and feedback control theory. They use server turn
on/off and DVFS for enhancing power savings.
Ranganathan et al. [40] highlight the current issue
of under utilization and over-provisioning of the
servers and present a solution for peak power
budget management across a server ensemble
to avoid excessive over-provisioning considering
DVFS and memory/disk scaling. Rusu et al. [43]
propose a cluster-wide on/off policy based on dy-
namic reconfiguration and DVFS. They focus on
power, execution time, and server capacity charac-
terization to provide energy management. Rodero
et al. [41] studied application-centric aggressive
power management of data centers resources for
HPC workloads considering power management
mechanisms and controls available at different
levels and for different subsystems (i.e., CPU,
memory, disk, network). Kephart et al. [22] and
Das et al. [9] address the coordination of multi-
ple autonomic managers for power/performance
tradeoffs by using a utility function approach in a
non virtualized environment.

Virtual machine monitor configurations (e.g.,
within the Xen hypervisor) such as pinning (i.e.,
CPU affinity) have been proposed earlier (as in
[50]) to optimize VM performance. In this article,
we investigate the use of power management and
performance optimization techniques (DVFS and
pinning) for mitigating thermal anomalies before
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considering costly VM migrations. To the best of
our knowledge, none of the existing approaches
have investigated and exploited pinning to miti-
gate the effects of thermal anomalies with energy
efficiency and performance as optimization goals.

2.4 Energy Management at the Virtualization
Layer

A large body of work in datacenter energy man-
agement addresses the problem of the request
distribution at the VM management level in such
a way that the performance goals are met and the
energy consumption is minimized. VM consolida-
tion techniques involve filling up physical servers
with VMs (using heuristics like first fit, best fit,
etc.) until high server subsystem (CPU, mem-
ory, disk storage, network interface) utilization is
achieved while still ensuring that the individual
VM’s subsystem utilization requirements are met.
Apparao et al. [3] present a study on the impact
of consolidating several applications on a single
server running Xen.

Server resource provisioning or VM allocation
can be static or dynamic. It is static when a VM
is being allocated physical resources for the first
time and the problem of VM allocation reduces
to a deterministic or statistical bin/vector-packing
problem [2] depending on how the VM utiliza-
tion requirement is characterized. In the dynamic
case, VMs are first consolidated using any simple
bin-packing heuristic and the variations in VM’s
utilization requirements are handled through live
VM migrations [6, 19, 51, 53, 54] or through
dynamic server resource provisioning [29, 34]
whenever necessary.

2.5 SLA-Management at the Virtualization Layer

VM migrations are performed either reactively
[42] or proactively [6] in such a way as to avoid
equipment overheating and/or SLA violations.
Kochut et al. [23] provide an estimate of the
expected improvement in response time due to
a migration decision and determines which VMs
are best candidates to be placed together. In [19],
Hermenier et al. determine the order in which
the VM migrations should occur in addition to

deciding which VMs to migrate so to minimize
the impact on application performance in terms
of execution time. Stoess et al. [51] developed a
multi-tiered infrastructure that enables intra-node
virtual CPU (vCPU) migration and inter-node
live VM migration for workload consolidation and
thermal balancing. Voorsluys et al. [55] present an
evaluation on the effects of live migration of vir-
tual machines on the performance of applications
running inside Xen VMs.

On-demand server resource provisioning tech-
niques monitor the workloads on a set of VMs
and adjust the instantaneous resources availed by
VMs. Song et al. [49] propose an adaptive and dy-
namic scheme for adjusting resources (specifically,
CPU and memory) among virtual machines on
a single server to share the physical resources
efficiently. Menasce et al. [29] proposed an au-
tonomic controller and showed how it can be
used to dynamically allocate CPUs in virtualized
environments with varying workload levels by op-
timizing a global utility function. Meng et al. [30]
exploited statistical multiplexing of VMs to enable
joint VM provisioning and consolidation based
on aggregated capacity needs. However, all the
aforementioned techniques are aimed at satisfy-
ing the resource utilization level guarantees and
do not consider the application-level performance
(execution time).

2.6 Cross-Layer Solutions For Power-, Thermal-,
and QoS-Management

Nathuji et al. [35] investigate the integration of
power management at the physical layer and vir-
tualization technologies. In particular they pro-
pose VirtualPower to support the isolated and
independent operation of virtual machines and
control the coordination among virtual machines
to reduce the power consumption. In [34], Nathuji
et al. consider the heterogeneity of the underlying
platforms (in terms of processor and memory sub-
system architecture) to efficiently map the work-
loads to the best fitting platforms. Laszewski et al.
[25] present a scheduling algorithm for VMs in a
cluster to reduce power consumption using DVFS.
Kumar et al. [24] present vManage, a practical co-
ordination approach that loosely couples platform
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and virtualization management aimed at improv-
ing energy savings and QoS and at reducing VM
migrations.

Heath et al. [18] propose emulation tools (Mer-
cury and Freon) for investigating the thermal im-
plications of power management. In [39], Ramos
et al. present C-Oracle, a software infrastructure
that dynamically predicts the temperature and
performance impact of different thermal manage-
ment reactions (such as load redistribution and
dynamic voltage and frequency scaling) into the
future, allowing the thermal management policy
to select the best reaction.

Recently, researchers have started to focus on
application- or workload-aware VM consolidation
that not only achieves all the objectives as its
traditional resource-utilization- and energy-aware
counterparts but also ensures minimum degrada-
tion to application performance due to resource
multiplexing and virtualization overhead [15, 17,
56]. Application-aware VM allocation is not only
aimed at energy-efficient VM consolidation but
also at co-locating VMs that are “compatible” so
that further gains can be achieved in terms of
energy savings and overhead for virtualization.
In [17, 56], the authors propose to consolidate
VMs with similar memory content on the same
hosts for higher memory sharing and Govindan
et al. [15] propose to consolidate based on inter-
process communication patterns. Zhu et al. [57]
propose pSciMapper, a power-aware method for
consolidation virtual machines that host scientific
workflow tasks. They use a dimensionality re-
duction technique, Kernel Canonical Correlation
Analysis (KCCA), to associate temporal features
extracted from time series data about resource
requirements of a workflow task with its power
consumption and execution time (performance).
Information about the tasks’ power consumption
and performance are exploited in an online con-
solidation algorithm.

All the aforementioned cross-layer solutions
are characterized only by pair-wise interaction
between two layers—physical and virtualization
layers, physical and environment layers, or appli-
cation and virtualization layers. In our proposed
thermal-aware management solution interactions
between the application and the virtualization
layers are leveraged for proactive VM allocation

while interactions among all the four layers are ex-
ploited for reactive thermal management. In other
words, in our thermal management solution, the
environment layer alerts the virtualization layer
and physical layer about undesired thermal be-
havior. These two layers jointly decide whether to
use power management techniques at the physical
layer or VM migration with help from application
layer to alleviate the thermal anomalies.

3 Reactive Thermal Management in Datacenters

In this section, we briefly discuss the charac-
teristics of thermal hotspots that majorly cause
thermal inefficiency in datacenters. Then, we in-
troduce three different techniques to mitigate
the effects of hotspots and a characterization
of the different techniques based on empirical
experimentation.

3.1 Characteristics of Thermal Hotspots

Hotspots can be detected using internal and ex-
ternal temperature sensors when the measure-
ments cross specific temperature value defined
as “hotspot threshold”. Hotspots are difficult to
localize accurately in space and are hard to predict
in time: this is because the heat transfer via air
circulation (convection) and through the server
blades and racks (conduction) are phenomena

Fig. 2 26 TelosB motes deployed on a rack to observe the
characteristics of hotspots
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Fig. 3 Temporal and spatial measurement data (temperature) among 13 nodes

difficult to model. In addition, hotspots change
their positions in time and space depending on
several factors such as distribution and intensity of
running workloads, server heat dissipation char-
acteristics, airflow circulation in the datacenter,
etc. Thus, it is crucial to understand the charac-
teristics of hotspots for energy-efficient thermal
management.

The temporal correlation of the measured tem-
perature data collected from 13 TelosB sensor
nodes (deployed in front of the outlet fans of each
server in a dual rack system), each placed on 13
vertically arranged servers (as shown in Fig. 2) is
depicted in Fig. 3. These TelosB sensor nodes are
wirelessly connected and built with IEEE 802.15.4
compliant CC2420 radio (2.4 GHz) as well as
with a few sensors (temperature, humidity, and
light). Figure 3a and b correspond to the set of
experiments of using TelosB nodes in which only
servers 7–13 and 7–10 are running, respectively.
These results show that some idle servers that are
in the proximity of operational servers experience
an increase in temperature much higher than that
of other idle servers. These results show that a
hotspot affecting a server may in fact be caused
by another server running on the same rack or
on a different one nearby. The increase in the
temperature near the outlet fans of idle servers
(due to conduction and convection) decreases the
ability of the air around idle CPUs to extract heat
efficiently when the idle servers become busy.
This results in higher server operating tempera-
tures, which in turn increases the risk of failures.

The only solution to counter this effect is decreas-
ing the CRAC outlet air temperature, which is not
energy efficient.

Figure 4 shows the thermal behavior of a single
server in the presence of an hotspot and the cor-
responding power consumption. It also shows the
impact of VM migration on server’s temperature
and power consumption. The temperature sensors
on the TelosB nodes placed near the server outlet
fan (external) and near the CPU (internal) are
used to observe heat propagation in space and
time. The increase of the external temperature,
which is controlled with a heat source (from sec-
ond 600 to 1,400) results in an increase of the
server’s internal temperature. The figures illus-
trate the impact of migrating one VM on the
server’s temperature and power consumption (at
second 900—reacting to the hotspot). In com-
paring the internal server temperature (Fig. 4a)
and power consumption (Fig. 4b) we observe that
there is a correlation between the two metrics.

3.2 Reactive Thermal Management Approaches

A typical mechanism used to reduce the server’s
temperature (e.g., to react to a hotspot) consists
of decreasing the heat generated by the server,
which, based on our measurements is highly cor-
related with the server’s power consumption.
As the CPU1 is the most power consuming

1We use the term CPU to refer to each core of a multi-core
processor.
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Fig. 4 Server’s thermal and power behavior in the presence of a hotpost

component of a server, we consider CPU power
(as a simplification) to describe the different tech-
niques analyzed in this article. Equation 1 shows a
simplified dynamic power dissipation model for a
CPU, where C is the capacitance of the processor
(that we consider fixed), α is an activity factor
(also known as switching activity), and V and f
are the operational voltage and frequency, respec-
tively [21].

Pcpu ∼ C × α × V2 × f. (1)

Therefore, the power consumption of a server
can be decreased by either reducing the activity of
CPUs or reducing the frequency/voltage of CPUs
(via DVFS). In the following sections, we discuss
different techniques that use this model to reduce
server power consumption (and thus the heat gen-
erated). We do not take into account cooling or
placement issues; rather, we focus on the energy
efficiency of thermal management approaches on
the servers considering HPC workloads and vir-
tualized environments under the assumption that
cooling and placement do not change.

3.2.1 VM Migration

This technique consists of moving a running VM,
its guest OS, and all of its applications to a
different server. Migrating VMs reduces the CPU
activity α in (1) and, if a CPU is freed and the OS
implements dynamic CPU power management, it
can also reduce the frequency/voltage. We assume
that the OS power management is enabled by de-
fault. When we need to migrate a VM or multiple

VMs to react to a hotspot, one of the following
four scenarios is possible:

– Another server is available to host the VM(s)
that are being migrated: migration can be
performed at the penalty of some overhead
(energy, latency, bandwidth).

– A server has been powered down: we can per-
form the migration after powering the server
up at the additional penalty of booting.

– All servers already have some load but some
of them have higher thermal efficiency: we
can perform the migration but with possible
penalty due to resource sharing between mi-
grated workload and the existing workload in
the destination server.

– No other server is available to host new
VM(s): in this case, we can only suspend the
VM(s) until a server becomes available.

3.2.2 Processor DVFS

This is an effective technique to reduce proces-
sor power dissipation supported in most of the
current processors. DVFS reduces the proces-
sor frequency/voltage but not the activity fac-
tor. However, CPU-intensive workloads running
at low frequencies may experience a significant
penalty on their execution time. Within a single
server we can use DVFS in two ways:

– By reducing the frequency/voltage of all CPUs
simultaneously: the workload execution may
increase depending of the frequency/voltage
reduction and workload characteristics (e.g.,
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I/O-intensive workloads may not be sig-
nificantly penalized).

– By reducing the frequency/voltage of a subset
of CPUs: if different VMs are independent
they may complete their workload at different
times. If VMs are coupled (e.g., MPI parallel
applications) the workload running in slower
CPUs may penalize the workload running
in faster CPUs. However, some architectures
have restrictions (e.g., by paired CPUs).

3.2.3 VMM Conf iguration (Pinning)

We propose to use this technique to react to
hotspots as an alternative to VM migration and
DVFS. VMMs may allow virtual CPUs (vCPUs)
of VMs to be assigned to physical CPUs (pCPUs)
using two different approaches: without and with
affinity (pinning). In the former, the VMM de-
termines how vCPUs are assigned to pCPUs; in
the latter, the VMM allows hard assignments of
the vCPUs to one or more pCPUs. Pinning tech-
niques are typically used where the characteristics
of the workload would benefit from execution on
specific CPUs (e.g., cache locality).

We propose to reduce the activity of one or
more CPUs by pinning the VMs to the other
CPUs. As we assume that the OS performs by
default dynamic CPU power management, when
a CPU is freed from VMs activity, its frequency
or voltage can also be reduced. However, the
activity of the running CPUs may be increased,
resulting in a penalty in the workload’s execution
performance caused by higher resource sharing.

3.3 Characterizing Thermal Management
Techniques

We evaluated the three VM management tech-
niques discussed previously using two Dell
servers, each with an Intel quad-core Xeon X3220
processor which operates at four frequencies rang-
ing from 1.6 GHz to 2.4 GHz, 4 GB of memory,
two hard disks, and two 1 Gb Ethernet inter-
faces. This is intended to represent a general-
purpose rack server configuration, widely used in
virtualized datacenters. The servers were racked
one on top of the other and run CentOS Linux
operating system with a patched 2.6.18 kernel with

Xen version 3.1. To empirically measure the “in-
stantaneous” power consumption of the servers
we used a “Watts Up? .NET” power meter. This
power meter has an accuracy of ±1.5 % of the
measured power with sampling rate of 1 Hz. The
meter was mounted between the wall power and
the server. We estimate the consumed energy by
integrating the actual power measures over time.
We used built-in temperature sensors and Linux-
based hardware monitoring tool ’lm-sensors’ to
measure CPU temperatures, and TelosB motes
to measure both internal (sensors placed inside
the chassis, near the CPU) and external (sensors
places on the back of the servers) temperatures
of the server as described in Section 3.1. We used
the CPUfreq kernel module and its user-space
tools to dynamically adjust the voltage and fre-
quency pairs. We used a Sunbeam SFH111 heater
(directed at the servers) in order to emulate a
controlled thermal hotspot (e.g., potentially from
other servers), which facilitated the experiments
since the nodes were isolated with disproportion-
ate cooling.

Figures 5, 6, and 7 show the thermal behav-
ior and power consumption of a server when
running a HPC workload with the different VM
management techniques considered in this article.
Specifically, we used the HPL Linpack bench-
mark, which is one of the most representative
HPC benchmarks (uses intensively different re-
sources such as CPU and memory) since the goal
of this experiment was to get insights regard-
ing typical behaviors and trends. All the tech-
niques and configurations have been evaluated
under the same conditions. The experiment con-
sists of running HPL in 4 VM instances with the
same configuration and applying a given tech-
nique 800 s after starting the experiment (which is
long enough to reach the steady state). The figures
focus on the initial part of the experiment to show
better the trends and only plot the Bezier curves
for readability. We obtained the external temper-
ature of the server with a sensor placed in the back
side of the server, and the internal temperature (in
◦C) of the server with a sensor placed inside the
server. The internal sensor provides the average
temperature of the server’s components (not only
CPU temperature, which can be obtained from its
internal sensors).
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Fig. 5 Thermal behavior and power consumption using VM migration
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Fig. 6 Thermal behavior and power consumption using processor DVFS
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We can appreciate in the figures that internal
and external temperatures are strongly correlated
and follow similar trends. However, the internal
temperature is almost 8 ◦C higher than the ex-
ternal temperature. Temperature and power are
also correlated but variations in temperature are
slower than in power. Overall, the higher reduc-
tion in temperature and power are obtained using
VM migration. The higher the number of VMs
migrated, the more significant the decrease of
temperature and power. The reduction of temper-
ature and power is more moderate using DVFS
than using VM migration. The highest reduction
in temperature and power is obtained operating
all 4 CPUs at 1.60 GHz. This is consistent with (1),
where higher the operational frequency higher
the temperature and power consumption. How-
ever, running 2 CPUs at 1.60 GHz and 2 CPUs
at 2.40 GHz obtains slightly worse results than
running all CPUs at 2.13 GHz.

The reduction in temperature and power using
pinning is lower than the one using VM migration
but higher than the one using DVFS. The reduc-
tion in temperature and power is higher when
the VMs are pinned to fewer CPUs. Although
using different techniques we obtain different re-
ductions in temperature and power, the plots ob-
tained with the three different mechanisms follow
similar patterns. Hence, we can conclude that all
of them can reduce the temperature and power
consumption effectively, however, we focus on the
tradeoffs between performance, energy efficiency,
and thermal efficiency (i.e., temperature reduc-
tion).

In order to measure the energy consumed by
the servers in the experiments that perform VM
migrations, we have considered the energy con-
sumed by the original server during the whole
execution of the experiment plus the energy con-
sumed by the destination machine from when the
VMs start migrating to the destination machine
(i.e., shadowed area in Fig. 8a and b).

In the case that the destination machine already
hosts other VMs, we take into account the energy
consumed from the increase of power in relation
to the power consumed by the server before the
migration. Although we can find other intermedi-
ate scenarios, in our experiments we only consider
these two scenarios as they provide simplified

but meaningful performance bounds. Although
VM migration seems better in terms of thermal
efficiency, we look at the tradeoffs between ther-
mal efficiency and other dimensions such as per-
formance and energy efficiency.

Table 1 summarizes the experimental results. It
shows i) the obtained makespan (the time needed
to complete the workload, which may include the
migration overhead), ii) the energy consumed,
iii) the Energy Delay Product (EDP), which is
a good metric for energy efficiency because it
captures the effect of energy management on per-
formance [14], and iv) the reduction of temper-
ature (“Temp. ↓” in Table 1). For the reference
execution (regular execution without any specific
technique) we present absolute values and for
the different techniques we present the results
relative the reference execution (in the form of
% increase), except for temperature reduction.
The best results of each technique are shown
in bold.

As we commented previously, VM migration
is the technique that achieves highest reduction
in temperature. At the price of some migration
overhead, we also achieve shorter makespan by
migrating two VMs. However, it does not achieve
the highest energy efficiency. The configuration
where the destination server is empty is better
than when the destination server is full in term
of makespan but is worse in terms of energy
efficiency. The configuration where the destina-
tion is full is the best case in term of energy
efficiency (except for migration of 2 VMs) but the
worst in terms of makespan. However, when the
destination server is switched off, the penalty of
starting up the server on both makespan and en-
ergy efficiency is significant. When the destination
server is full, the number of migrated VMs does
not influence significantly either the makespan or
the energy efficiency. However, the higher the
number of migrated VMs, the higher the reduc-
tion of temperature. Hence, the potential increase
of temperature and the penalty on existing VMs
on the destination server should be analyzed in
order to identify the tradeoffs between increasing
the number of migrated VMs and the negative
effects on the destination machine.

In most of the cases, DVFS obtains worse re-
sults than the other techniques, in contrast to
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(a) Source server (running 4 VMs) (b) Destination server (initially idle)

Fig. 8 Power consumption of source/destination servers when migrating one VM. Migration starting time is depicted with
the dashed vertical line

other approaches that only focus on DVFS mainly
for non-virtualized environments. To obtain a
similar reduction of temperature with DVFS, the
penalty on both makespan and energy efficiency
is higher. As we commented previously, running
all CPUs at 2.13 GHz works better than running
2 CPUs at 1.60 GHz. In fact, if the workloads
of the different VMs were dependent, the exe-
cution time of the workload when using 2 CPUs
at 1.60 GHz and using 4 CPUs at 1.60 GHz
would be similar. Pinning the VMs to 3 CPUs
penalizes makespan by only 18.57 % (which is
similar to the penalty when performing VM mi-

gration) but gives the highest energy efficiency.
However, the reduction in temperature is lower
than the one with VM migration. A higher re-
duction in temperature is achieved when pinning
the VMs to 2 CPUs; however, in such scenario
the makespan increases significantly and becomes
comparable to running all CPUs at 2.13 GHz
(which is the best case for DVFS). Pinning the
VMs to only one CPU achieves a higher re-
duction in temperature but the penalty on both
makespan and energy efficiency (due to resource
sharing and the associated problems such as con-
text switches) is not acceptable. Thus, the thresh-

Table 1 Experimental results using different VM management techniques

Technique - configuration Makespan (s) Energy (J) EDP Temp ↓
Reference (regular execution) 2,239 s 501,023 J 1,121,790,497 –
Migrate 1 VM – destination empty +19.60 % +52.82 % +82.79 % 4 ◦C
Migrate 1 VM – destination full +37.51 % +31.92 % +81.41 % 4 ◦C
Migrate 1 VM – destination off +26.52 % +57.40 % +83.10 % 4 ◦C
Migrate 2 VMs – destination empty +14.15% +51.86 % +73.36 % 9 ◦C
Migrate 2 VMs – destination full +37.51 % +30.92 % +80.04 % 9 ◦C
Migrate 2 VMs – destination off +21.08 % +56.44 % +73.68 % 9 ◦C
Migrate 3 VMs – destination empty +16.43 % +51.71 % +76.65 % 15 ◦C
Migrate 3 VMs – destination full +37.60 % +25.89 % +73.12 % 15 ◦C
Migrate 3 VMs – destination off +23.35 % +56.29 % +76.96 % 15 ◦C
DVFS 4 CPUs @1.60 GHz +78.38 % +46.18 % +160.76 % 8 ◦C
DVFS 4 CPUs @2.13 GHz +53.46 % +36.28 % +109.15 % 4 ◦C
DVFS 2 CPUs @1.60 GHz +60.02 % +51.14 % +141.87 % 3 ◦C
Pinning VMs to 3 CPUs +18.57 % +16.23 % +37.83 % 2.5 ◦C
Pinning VMs to 2 CPUs +55.69 % +37.03 % +113.35 % 6 ◦C
Pinning VMs to 1 CPU +165.74 % +108.89 % +455.11 % 10◦C

“Destination empty” means that the destination server is running but idle, “destination full” means that the destination server
has 4 VMs running on the 4 CPUs, and “destination of f ” means that de destination server is switched off
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old for applying the pinning technique is 2 CPUs
for the HPL workload, which results in a temper-
ature decrease of 6 ◦C. This temperature decrease
may be sufficient to react to many moderate
hotspots.

Overall, the obtained results show that, de-
pending on the temperature reduction required to
mitigate the effects of a hotspot and the optimiza-
tion goals (i.e., performance or energy efficiency),
VM migration and pinning are the most effective
techniques. The results also show that when there
are available servers to migrate VMs and the
main objective is optimizing performance (i.e.,
minimizing the makespan), it may be better mi-
grating VMs rather than using other techniques.
However, when the focus is energy efficiency,
pinning may be a preferable technique in favor of
VM migration. Furthermore, when VM migration
is not feasible, pinning is the most effective mech-
anism to reduce the server’s temperature while
balancing performance and energy efficiency.

4 Proactive VM Allocation Model and
Implementation

The purpose of our proactive VM allocation ap-
proach is to increase the resource utilization and,
hence, the energy efficiency. It aims at aims at
maximizing the system throughput by allocating
the maximum possible number of VMs per node,
without penalizing the applications’ performance.
In other words, the objective is to find out the
trade-off between the applications’ performance
and the overall datacenter energy consumption
when different number and combinations of a
variety of VMs are allocated to a physical server.
The performance of an application is measured
in terms of its average execution time, which is
defined as the ratio of the maximum application
execution time when a number of VMs are run-
ning simultaneously to the number of VMs. This
metric gives an insight into the gains obtained
by multiplexing VMs (i.e., running them in par-
allel) over running them sequentially one after
the other. It is important to note that by con-
sidering the average execution time of VMs we
do not focus on minimizing the execution time of
each application individually but we strive to im-

prove the QoS by minimizing the number of SLA
violations.

As the best number of VMs per node may be
different for different application types (based on
their usage of different subsystems), we consider
the applications’ profiles. Specifically, we focus
on finding the best partition and allocation of
VMs when the different VMs run applications of
different types. In our approach, we assume that
the applications’ profiles are known in advance
(e.g., specified by the user in the job definition).
To find the allocation for a set of VMs that
best matches energy efficiency/performance goals
while ensuring QoS guarantees, we rely on a
model based on empirical data from experiments.
We have developed a methodology composed of
the following steps:

1. Profile a comprehensive set of applications
(standard HPC benchmark workloads);

2. Run benchmarks exhaustively (all possible al-
locations based on number of VMs and appli-
cation type) and collect data;

3. Create a model (database) with all the
data collected during the benchmarking
process, including execution time and energy
consumed;

4. Implement an algorithm that, given the i)
model, ii) an optimization goal (either min-
imize energy consumption or minimize exe-
cution time), iii) a set of servers with their
current allocations, and iv) a set of VMs along
with their characteristics, returns a set of parti-
tions and allocations of the VMs in the servers.

4.1 Application Profiling

The methodology involves profiling an applica-
tion’s (and, hence, a VM’s) behavior as I/O-
intensive, memory-intensive, and/or CPU-intensive
based on its usage of different subsystems. Most
of the standard profiling utilities are designed
for comparing computation efficiency of the ap-
plications on systems on which they are run-
ning and, therefore, their outputs are not very
useful from the subsystem usage point of view.
We profiled standard HPC benchmarks with re-
spect to their behaviors and subsystem usage on
individual servers. To collect run-time OS-level
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metrics for CPU utilization, hard disk I/O, and
network I/O we used different mechanisms such
as “mpstat”, “iostat”, “netstat” or “PowerTOP”
from Intel. We also patched the Linux kernel
2.6.18 with “perfctr” so that we can read hardware
performance counters on-line with relatively small
overhead. We instrumented the applications with
PAPI and, as the server architecture does not
support total memory LD/ST counter, we counted
the number of L2 cache misses, which indicates
(approximately) the activity of memory.

We chose a comprehensive set of HPC bench-
mark workloads. Each workload stresses one
or more of the following subsystems—CPU,
memory, disk (storage), and network interface.
They can be classified as:

– CPU intensive, e.g., HPL Linpack, which
solves a (random) dense linear system in dou-
ble precision arithmetic, and FFTW, which
computes the discrete Fourier transform.

– Memory intensive, e.g., sysbench, which is
a multi-threaded benchmark developed orig-
inally to evaluate systems running a database
under intensive load.

– I/O intensive, e.g., b_eff_io, which is
a MPI-I/O application, and bonnie++,

which focuses on hard-drive and file-system
performance.

An application usually demands the services
of a given subsystem in discrete time windows.
However, if the average demand for a subsystem
X is significant, we consider the application to
be X-intensive. Figure 9 (left) shows different
subsystem utilizations of a CPU-intensive work-
load. Note that an application can also be deemed
to be intensive along multiple dimensions if the
demand for resources from multiple subsystems
are significant. Figure 9 (right) shows different
subsystem utilizations of a network- and CPU-
intensive workload. The utilization of a particular
subsystem by two different VMs running applica-
tions may either overlap (resulting in contention)
or not overlap (be contention free).

4.2 Benchmarking

The benchmarking was conducted in the experi-
mental setup described in Section 3.3. In addition
to using a single server type, we made some ad-
ditional assumptions, such as a single process per
VM, to reduce the complexity. To run multiple
processes (e.g., MPI applications) multiple VMs
are required.

Fig. 9 Sub-system utilization over time for a CPU-intensive workload (left) and a CPU-plus-network-intensive workload
(right)
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In order to acquire sufficient data to create
a VM allocation model, firstly, we conducted a
set of base tests that consolidate different VM
instances running applications of the same type
in a single server. This allowed us to find out, on
the one hand, the optimal scenarios to either max-
imize performance or minimize energy consump-
tion and, on the other hand, the maximum number
of VMs that can be consolidated in a single server
without adversely impacting energy consumption
and the applications’ performance. We ran the
base experiments with different number of VMs
(up to 16) running the same application type for
each of the application’s profiles.

From the base tests, we obtained a set of
optimal scenarios, i.e., optimal number of VMs
for the shortest average execution times and for
minimum energy consumption. The second part
of the benchmarking consists of running all the
possible combinations of workload types with
different number of VMs. The combinations ex-
cluded those that do not require any VM of each
workload type and the base tests. The experiments
took several days to be completed and they were
conducted using a platform that we developed to
automatically run the benchmarks and process the
data.

4.3 Database

In order to make our model available for proac-
tive VM consolidation, the information collected
from the benchmarking (base and combined tests)
was stored in a database. As the amount of in-
formation was manageable using text files, we
used a plain-text file with comma-separated values
(CSV) instead of an actual database management
system. Table 2 summarizes the information con-
tained in the database.

In addition to the information listed in Table 2,
we store other relevant information from the base
experiments such as the number of VMs of op-
timal scenarios and reference execution times, in
an auxiliary file. As the registers of the database
are accessed using binary search, the searching
cost is O(log(num_tests)). Therefore, we sorted (in
the ascending order) the registers of the database
by a searching key, which is composed of the

Table 2 Summary of the information stored in the
database

Field Description

Ncpu #VMs running a CPU-intensive
benchmark

Nmem #VMs running a memory-intensive
benchmark

Nio #VMs running an I/O-intensive
benchmark

relTimeVM Relative execution time for each VM
(for each VM) (relative time = total exec time/exec

time on 1 VM)
Time Total execution time of the

outcome (s)
Energy Energy consumed to run the

outcome (J)
MaxPower Maximum power dissipation

measured (W)
EDP Energy delay product (J × s)

parameters that indicate the number of VMs of
each workload type (Ncpu, Nmem, Nio).

4.4 VM Allocation Algorithm

Our VM allocation algorithm takes advantage of
the model (in the form of a database) that is
described above. It has two main objectives, (i)
minimize energy consumption and (ii) maximize
the performance (i.e., minimize workload execu-
tion time). As these are two conflicting objectives,
we use a parameter α to adjust the possible trade-
off between energy efficiency and performance; α

is defined as follows: α ∈ R ∩ α ∈ (0, . . . , 1) and
emphasizes the energy efficiency goal while 1 − α

emphasizes performance. For example, if α = 0.7
the algorithm will try to minimize the energy con-
sumption first (70 % of preference) and then the
performance but with less intensity (30 % of pref-
erence). The allocation algorithm focuses on the
objectives discussed above and does not consider
specific policies such as those based on priorities.
The input parameters of the algorithm are: (i)
the database with the allocation model, (ii) val-
ues from the base experiments (can be extracted
from the auxiliary file), (iii) a set of VMs and the
application’s profile and maximum execution time
(QoS guarantees) for each of them, and (iv) the
optimization goal (α).
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First, as mentioned earlier, the algorithm sets
up the knowledge database by loading it in mem-
ory and sorting it using a three-column key (e.g.
Ncpu, Nmem and Nio) in order to accelerate the
search. Then, the estimated runtime and energy
for each combination of the VMs are calculated
and the minimum of them is taken. Note that, if
there are N VMs in the input set, it can have BN

partitions, where BN is the Bell number. An ex-
haustive search over these BN distinct partitions is
guaranteed to provide an optimal solution. Each
partition of the set contains several disjoint sub-

sets, and each of these subsets contains a certain
number of CPU-, memory- and/or I/O-intensive
VMs. The number of CPU-, memory- and I/O-
intensive VMs in the input are used to search
the database entries associated to them. The es-
timated execution time of a subset is computed by
multiplying the original input runtime (which is an
input parameter) by relTimeVM. Similarly, the
estimated energy consumption of a subset is com-
puted by multiplying the estimated runtime by
average power (also stored in the database). The
computational complexity of the whole algorithm

Fig. 10 VM allocation
algorithm
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is O(BN · log(NDB)), where N is the number of
VMs to allocate and NDB is the number of ele-
ments in the knowledge database. The algorithm
returns the allocation of VMs that best matches
the input optimization goal while satisfying the
QoS constraints. The algorithm can be relaxed by
disregarding the QoS guarantees but it might be
not acceptable for production system.

To find the best partitions of the input set of
VMs for allocation in individual servers, we used a
brute-force search algorithm over the servers with
their current VM allocations. In cases where the
number of partitions of the input set was large, we
used the search algorithm discussed in [36], which
is efficient in terms of complexity. If two partitions
have the same rank in different servers, we select
the first server of the list. Figure 10 shows the
main components and control flow of our VM
allocation algorithm.

5 Evaluation

In this section, we discuss the performance of
our proposed proactive VM allocation and reac-
tive thermal management strategies. Firstly, we
evaluated the possible energy savings and perfor-
mance tradeoffs that can be achieved at the dat-
acenter level using our proactive VM allocation
algorithm described in the previous section. We
conducted the simulations using parallel workload
traces from real HPC production systems. Then,
we conducted an experimental evaluation of our
proposed reactive thermal management solution
and compared it with other existing techniques.

5.1 Simulation

To evaluate the performance and energy
efficiency of our VM allocation algorithm we
used workload traces from real HPC production
systems like the Grid Observatory [13], which
collects, publishes, and analyzes logs of the
behavior of the EGEE Grid [10]. As the readily
available traces are in different formats and
include data that are not useful for our purpose,
they were pre-processed before use in the
simulations. Firstly, we converted the input traces
to the Standard Workload Format (SWF) [11]

and as they are usually composed of multiple
files we combined them into a single file. Then,
we cleaned the traces, now in SWF format, in
order to eliminate failed jobs, cancelled jobs, and
anomalies. As the traces found from different
systems did not provide all the information
needed for our analysis, we needed to complete
them using a model based on the benchmarking of
HPC applications (see Section 4). We randomly
assigned one of the four possible benchmark
profiles to each request in the input trace,
following a uniform distribution by bursts. The
bursts of job requests were sized (randomly) from
1 to 5 job requests. These traces are intended
to illustrate the submission of scientific HPC
workflows, which are composed of sets of jobs
with the same resource requirements.

As the EGEE Grid is a large-scale hetero-
geneous distributed system composed of a large
number of nodes, we scaled and adapted the job
requests to the characteristics of our system model
and evaluation methodology. Specifically, we as-
signed 1 to 4 VMs per job request rather than
the original CPU demand and we defined the
QoS requirements (maximum response time) per
application type and not for each specific request.

Data obtained from real experiments on repre-
sentative server hardware were used to populate
the database and to create the empirical model de-
scribed in the previous section. Therefore, in our
simulations we used a system model composed
of several servers with the same characteristics of
our real server testbed. To compute the estimated
execution times and energy consumption we used
the information from our allocation model. Given
a specific partition with a subset of VMs running
their associated applications types, we lookup our
model database and use the matching values pro-
portionally. As VM allocations may vary over
time, we compute the estimated execution time
and energy consumption with the weighted aver-
age of the values associated to each interval of
time. We also assume a fixed power dissipation of
125 W when a server is idle.

Figure 11 illustrates a possible VM allocation
outcome over time for a server. The application
type associated with each VM is also shown.
Different time intervals (A, B, C) have different
VM allocations and, therefore, the estimated ex-
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Fig. 11 Possible VM
allocation outcome
over time

ecution time of the applications and energy con-
sumption for each interval will be different. For
example, the execution time of VM1 will be com-
puted considering the relative weight of each al-
location (70 % of allocation A and 30 % of alloca-
tion B) as follows: ExecTimeVM1 = 0.7 · 1200 s +
0.3 · 1800 s = 1380 s and the energy consumption
for the whole outcome will be: Energy = 0.35 ·
15 KJ + 0.15 · 20 KJ + 0.5 · 12 KJ = 14.25 KJ. As
we focus on studying the impact of VM allocation
on the performance/energy efficiency, we do not
consider the overhead for scheduling and resource
provisioning.

We evaluate the impact of our approach in
terms of the following metrics: makespan (in sec-
onds), which is the difference between the earliest
time of submission of any of the workload tasks
and the latest time of completion of any of its
tasks, energy consumption (in Joules), and per-
centage of SLA violations. The number of SLA
violations were calculated by summing the num-
ber of missed deadlines of all applications. The
deadline here refers to the maximum response
time as specified by the QoS requirements.

We have conducted our simulations using
different allocation strategies that have different
goals. Specifically, we have evaluated the follow-
ing allocation strategies:

– FIRST-FIT (FF), in which job requests are
allocated following the first-fit policy based
on CPU slots. It means that an incoming job
request is allocated to the first available server
until the number of allocated VMs is equal
to the number of CPUs (VM multiplexing on
CPUs is not allowed). FIRST-FIT-2 (FF-2)
and FIRST-FIT-3 (FF-3) are two variants of

FIRST-FIT that allow multiplexing up to 2
and 3 VMs on each CPU, respectively.

– Proactive (PA), in which job requests are al-
located to servers following the algorithm de-
scribed in Section 4. We consider the following
variations:

– α = 1 (PA-1): the goal is minimizing the
energy consumed;

– α = 0 (PA-0): the goal is minimizing the
execution time;

– α = 0.5 (PA-0.5): the goal is finding the
best tradeoff between execution time and
energy consumption. Note that, although
existing literature have addressed the op-
timization of both metrics using dynamic
concurrency throttling over parallel re-
gions [8], in this paper we assume that
energy efficiency and performance are,
in general, conflicting goals as we have
shown in our virtualized scenario.

Figures 12, 13 and 14 show the results ob-
tained using different VM allocation strategies
for handling the workloads traces described pre-
viously. Furthermore, in order to control the
pressure of the system load, we modeled two
different Clouds of different sizes rather than
using different input traces with different arrival
rates. The SMALLER Cloud system is the refer-
ence one and the LARGER Cloud system is over-
dimensioned (15 % approximately), which means
that the former one is expected to be more loaded
than the latter. The input trace used in the simula-
tions requests a total of 10,000 VMs.

As we can observe in Fig. 12, the PA strategy
can provide up to 18 % shorter execution times.
This is due to the fact that application awareness
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Fig. 12 Makespan (s)
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results in fewer contentions for resources as only
the most compatible VMs are consolidated. With
the FIRST-FIT strategy the execution times are
longer due to high resource contention, especially
when multiplexing 3 VMs on the same CPU. Fur-
thermore, Fig. 12 shows that the PA strategy with
the performance optimization goal reduces the
execution times by more than 3 % in comparison
to the same strategy with the energy optimization
goal. We can also appreciate that the execution
times in the SMALLER system are higher than
the execution times in the LARGER system due

to higher load pressure. This is especially evident
in the case of FF-3, FIRST-FIT strategy with mul-
tiplexing (up to 3 VMs per CPU), due to possible
additional resource contention.

Figure 13 shows that the PA strategy reduces
energy consumption by around 12 % on aver-
age with respect to FIRST-FIT (with and with-
out VM multiplexing). In fact, makespan and
energy consumption follow a similar pattern in
the LARGER system. Furthermore, Fig. 13 shows
that the PA strategy with the energy optimiza-
tion goal saves almost 3 % more energy than the

Fig. 13 Energy
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same strategy with the performance optimization
goal. However, with the goal of finding the best
tradeoff it provides intermediate results (but the
variations are not very significant, i.e., <2 %).
Although the makespan in the SMALLER system
is higher than the makespan in the LARGER sys-
tem, the energy consumption in the SMALLER
system is lower than the energy consumption in
the LARGER system as in the SMALLER system
there are fewer servers consuming energy and
there are more opportunities for consolidation.
However, with the FIRST-FIT strategy the re-
source contention penalizes the energy efficiency
significantly when multiplexing of 2 or 3 VMs is
allowed on the same CPU.

Figure 14 shows that the percentage of SLA
violations with the PA strategies is also less com-
pared to the traditional schemes. It means that the
PA strategy can maintain or even provide better
QoS guarantees than the traditional approaches.
Furthermore, we can observe in Fig. 14 a correla-
tion between execution time and SLA violations,
the higher the makespan higher the percentage
of SLA violations. We also can appreciate that
the strategies evaluated present similar behaviors
under higher load conditions. We do not show in
this article the results obtained with other possible
configurations of the PA strategy (e.g., α = 0.75)
since the variation in the results was not significant
enough.

5.2 Validation

We performed experiments on real hardware
in order to validate our proposed approach
for energy-efficient reactive thermal management
and to compare them with other existing VM man-
agement strategies. We considered 50 ◦C as ther-
mal emergency temperature. Although existing
literature considers emergency temperature of the
datacenter at 105–135 ◦F (40–57 ◦C) [12] and per-
component red line temperature to 72 ◦C for the
CPU and 67 ◦C for the disk [38], we determined
experimentally that there were hardware failures
when the servers operating temperature raised
above this threshold. Specifically, we evaluated
the following thermal management strategies:

– FIRST-FIT (FF), in which job requests are
allocated following the first-fit policy based on
CPU slots as the one used in our simulations.
This strategy provides an insight into the worst
performance (lower bound) when a naive VM
allocation strategy is followed without any re-
gard to the thermal behavior of the underlying
hardware.

– RANDOM (RND), in which job requests are
allocated to servers randomly. Servers with
least load (smallest number of VMs running
on them) are chosen with a high probability to
host the VMs corresponding to the current set

Fig. 14 Percentage
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of job requests. This strategy spreads the job
requests uniformly across all servers but may
not guarantee a uniform thermal behavior.

– TEMPERATURE-AWARE (TA), in which
the “coolest” among all servers whose oper-
ating temperatures are within a pre-specified
“safety” threshold (i.e., under the threshold of
50 ◦C) is chosen to host the VMs correspond-
ing to the current set of job requests. This
strategy spreads the thermal load uniformly
across all servers but does not ensure a uni-
form load distribution (in terms of number of
job requests allocated per server).

– VM-MIGRATION, in which the VMs are
initially allocated based on the FF approach.
When a server reaches unsafe operating tem-
peratures or thermal hotspots (regions that
are more than 50 ◦C in temperature in the test-
bed used) are detected, VMs are migrated and
again the FF approach is used to determine
where to reallocate the VMs.

– ENERGY-AWARE THERMAL MANAGE-
MENT (EATM), in which VMs are initially
allocated based on the proactive model de-
scribed in Section 4, the cross-layer reactive
thermal management described in Section 3 is
applied when a server reaches a unsafe tem-
perature or thermal hotspots are detected the
proactive VM allocation model is again used
to determine where to migrate the VMs (when
migration is chosen as the most appropriate
reaction to the thermal anomaly).

In all the strategies we limit the multiplexing
factor (i.e., the number of VMs that can run si-
multaneously on a physical CPU) to 2 VMs/CPU.
The experiments were conducted on a virtualized
cluster composed of 8 of the nodes described in
Section 3.1, stacked in one rack with Xen hypervi-

sor. A “Watts Up? .NET” power meter was used
for instantaneous power consumption measure-
ments as described in Section 3.3 and internal sen-
sors were used for detecting thermal anomalies.
The cluster was operated in a poorly cooled envi-
ronment and no cooling system optimization was
done simultaneously. We used a workload based
on the one described in Section 5.1 but scaled to
the size of the testbed (providing an average load
of around 75 %, which is a typical target for HPC
virtualized clusters).

Table 3 shows the experimental results for the
different strategies described above.“%Unsafe”
refers to the fraction of time that servers’ operat-
ing temperature was higher than 50 ◦C (aggregate
of all the servers’s “unsafe” fractions of time).
Figures 15 and 16 show the temperature in ◦C of
each server over time and power dissipation of the
cluster over time, respectively, for three represen-
tative strategies (i.e., RND, TA and EATM).

The overall results show that EATM out-
performs the other strategies. EATM provides
shorter makespan (2.25 % and 12 % shorter than
FF’s and TA’s, respectively), lower energy con-
sumption (around 9 % lower than both FF’s and
TA’s) and a lower EDP. We can appreciate that
TA achieves lower operating temperatures than
FF does but results in longer a makespan re-
sulting in higher energy consumption and, hence
higher EDP. This is because when all the available
servers’ operating temperatures are higher than
the safety threshold jobs cannot be scheduled and
are blocked until the temperatures reduce.

VM-MIGRATION technique outperforms FF,
RND, and TA strategies. However, it results in a
longer makespan and higher energy footprint than
EATM. This is due to the computation overhead
of VM migrations and the fact that the opportu-
nities for VM migrations are low when the sys-

Table 3 Experimental results using the different thermal management strategies

Strategy Makespan (s) Energy (KJ) EDP × 106 Power (watts) Temperature (◦C) % Unsafe

min avg max min avg max

FIRST-FIT 2,994 2,487 7,341 663 835 1,093 37.67 48.27 59.14 16.07
RANDOM 2,960 2,459 7,232 667 833 1,058 35.27 47.31 57.50 18.62
THERMAL-AWARE 3,282 2,502 8,211 679 817 1,050 32.45 45.13 54.12 7.25
VM-MIGRATION 3,180 2,407 7,654 482 768 1,067 29.50 44.61 57.74 9.12
EATM 2,928 2,281 6,719 662 781 942 32.17 43.17 52.64 6.87
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Fig. 15 Temperature
(in ◦C) of each server
over time

(b)  THERMAL-AWARE strategy

(a) RANDOM strategy

(c) EATM strategy
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Fig. 16 Cluster power
dissipation over time
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tem is already heavily loaded. The average power
consumption and minimum average temperature
is lower for VM migration with respect to EATM
due to the periods in which unused servers (which
are only a few and for a very short duration) are
switched off. VM-MIGRATION may work better
for lightly loaded scenarios where the probability
of having idle servers is high. However, we be-
lieve that EATM would be more effective from
an holistic perspective. Note that, in this paper,
we focus on HPC workloads and, therefore, VM
migration overheads are specific to such scenar-
ios and cannot be generalized for all types of
workloads.

The average power dissipation while using
EATM is 7 % and 5 % lower than those incurred
by FF/RND and TA, respectively, but larger than
the one incurred by VM-MIGRATION. How-
ever, EATM provides lower maximum power dis-
sipation with respect to VM-MIGRATION due
to the overhead of migrating VMs when the tem-
perature is high. The maximum power dissipa-
tion is also significantly lower for EATM with
respect to the other strategies (e.g., 16 % and
11 % lower than those incurred by FF and TA,
respectively).

EATM provides a better thermal behavior (i.e.,
10 % and 2 % lower average temperature com-
pared to FF and TA, respectively and significantly
lower maximum temperature) as it does react
to thermal anomalies and also consolidates bet-
ter the workload using an application-centric ap-
proach. In contrast to EATM, the TA policy re-
duces the maximum temperature but does not
control the average temperature because it does
nothing to mitigate thermal hotspots (only avoid
new job requests in the server), which results
in higher average temperature with respect to
EATM. It can be clearly seen in Fig. 16c that
the hottest servers are those in the middle of
the rack due to heat propagation and proba-
bly some affinity of workloads to these servers
in the policy implementation. We can also ob-
serve some clear thermal hotspots with tem-
peratures up to 57 ◦C. As far as the thermal
behavior of servers when using the TA strat-
egy is concerned, higher temperature zones are
uniformly spread and thermal hotspots are of
lower intensity. Similarly, while using EATM,
higher temperature zones are uniformly spread
but these temperatures are lower compared to
those achieved with TA and are well under
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the safety threshold (due to reactive thermal
management).

The fraction of time that servers run in unsafe
conditions while using EATM is much shorter
than the ones achieved while using FF (less than
50 %) and TA (less than 5 %), which indicates
that EATM achieves the objective of reducing
the probability of hardware failure while provid-
ing a positive tradeoff between performance and
energy.

6 Conclusions and Future Work

In this article, we presented and evaluated i) a re-
active cross-layer thermal management solution,
which alleviates undesired thermal anomalies (i.e.,
hotspots) in virtualized HPC cloud infrastructure
and ii) a proactive application-centric strategy
for VM allocation, which aims at maximizing the
resource utilization and energy efficiency while
satisfying quality of service guarantees for HPC
applications. The reactive thermal management
solution considers the tradeoffs among perfor-
mance, energy efficiency, and thermal efficiency
while using different mechanisms such as VM
migration, DVFS, and CPU pinning to alleviate
thermal anomalies. The VM allocation algorithm
leverages an empirical model for the average
energy consumption and execution time derived
from measurements on real hardware running
HPC workloads.

The results obtained from simulations using
real production HPC workload traces show that
our proactive VM allocation solution significantly
contributes to energy efficiency (12 % reduc-
tion in energy consumption) and/or optimization
of the application performance (18 % reduction
in execution time) depending on optimization
goals. Our reactive Energy-Aware Thermal Man-
agement (EATM) solution in conjunction with
the aforementioned allocation approach outper-
forms other traditional thermal management ap-
proaches like load redistribution (VM migrations)
and Temperature-Aware (TA) VM placement in
terms of energy consumption (up to 9 % less than
that of TA’s), makespan (up to 12 % less than
that of TA’s), maximum server operating tem-
peratures (up to 10 % less than that achieved by

the load redistribution technique), and percentage
of time for which servers operate in unsafe tem-
peratures (up to 25 % less than that achieved by
the load redistribution technique). As an exten-
sion of the work presented in this article, we are
currently working on a proactive VM allocation
model that uses the concept of heat imbalance
(which is the difference between heat generated
by servers and the heat extracted by the cooling
system) to project future temperatures and to
place workloads on servers. Also, this paper deals
with physical resources (testbed of servers) that
belong to the same datacenter. As part of our
study and validation of proactive thermal manage-
ment solutions (such as the aforementioned VM
allocation model), we are conducting experiments
on a heterogeneous testbed (in terms of comput-
ing as well as cooling resources) spanning over two
sites of NSF CAC at Rutgers University and the
University of Florida.
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